Skip to main content
Log in

Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The amount of weight loss in obese children during lifestyle intervention differs strongly between individuals. The metabolic processes underlying this variability are largely unknown. We hypothesize that metabolomics analyses of serum samples might help to identify metabolic predictors of weight loss. In this study, we investigated 80 obese children aged 6–15 years having completed the one-year lifestyle intervention program ‘Obeldicks’, 40 that achieved a substantial reduction of their body mass index standard deviation score (BMI-SDS) during this intervention (defined as BMI-SDS reduction ≥ 0.5), and 40 that did not improve their overweight status (BMI-SDS reduction < 0.1). Anthropometric and clinical parameters were measured and baseline fasting serum samples of all children were analyzed with a mass spectrometry-based metabolomics approach targeting 163 metabolites. Both univariate regression models and a multivariate least absolute shrinkage and selection operator (LASSO) approach identified lower serum concentrations of long-chain unsaturated phosphatidylcholines as well as smaller waist circumference as significant predictors of BMI-SDS reduction during intervention (p-values univariate models: 5.3E−03 to 1.0E−04). A permutation test showed that the LASSO model explained a significant part of BMI-SDS change (p = 4.6E−03). Our results suggest a role of phosphatidylcholine metabolism and abdominal obesity in body weight regulation. These findings might lead to a better understanding of the mechanisms behind the large inter-individual variation in response to lifestyle interventions, which is a prerequisite for the development of individualized intervention programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambroise, C., & McLachlan, G. J. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences USA, 99, 6562–6566.

    Article  CAS  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289–300.

    Google Scholar 

  • Bouchard, C., Tremblay, A., Després, J. P., et al. (1990). The response to long-term overfeeding in identical twins. New England Journal of Medicine, 322, 1477–1482.

    Article  CAS  PubMed  Google Scholar 

  • Bouchard, C., Tremblay, A., Després, J. P., et al. (1994). The response to exercise with constant energy intake in identical twins. Obesity Research, 2, 400–410.

    Article  CAS  PubMed  Google Scholar 

  • Braga-Neto, U. M., & Dougherty, E. R. (2004). Is cross-validation valid for small-sample microarray classification? Bioinformatics, 20, 374–380.

    Article  CAS  PubMed  Google Scholar 

  • Campión, J., Milagro, F. I., Goyenechea, E., & Martínez, J. A. (2009). TNF-alpha promoter methylation as a predictive biomarker for weight-loss response. Obesity, 17, 1293–1297.

    PubMed  Google Scholar 

  • Carmichael, H. E., Swinburn, B. A., & Wilson, M. R. (1998). Lower fat intake as a predictor of initial and sustained weight loss in obese subjects consuming an otherwise ad libitum diet. Journal of the American Dietetic Association, 98, 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Cole, T. J. (1990). The LMS method for constructing normalized growth standards. European Journal of Clinical Nutrition, 44, 45–60.

    CAS  PubMed  Google Scholar 

  • Danielsson, P., Svensson, V., Kowalski, J., Nyberg, G., Ekblom, O., & Marcus, C. (2012). Importance of age for 3-year continuous behavioral obesity treatment success and dropout rate. Obesity Facts, 5, 34–44.

    Article  PubMed  Google Scholar 

  • DeLong, C. J., Shen, Y. J., Thomas, M. J., & Cui, Z. (1999). Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. Journal of Biological Chemistry, 274, 29683–29688.

    Article  CAS  PubMed  Google Scholar 

  • Fleisch, A. F., Agarwal, N., Roberts, M. D., et al. (2007). Influence of serum leptin on weight and body fat growth in children at high risk for adult obesity. Journal of Clinical Endocrinology and Metabolism, 92, 948–954.

    Article  CAS  PubMed  Google Scholar 

  • Ford, A. L., Hunt, L. P., Cooper, A., & Shield, J. P. H. (2010). What reduction in BMI SDS is required in obese adolescents to improve body composition and cardiometabolic health? Archives of Disease in Childhood, 95, 256–261.

    Article  PubMed  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gautam, D., Gavrilova, O., Jeon, J., et al. (2006). Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metabolism, 4, 363–375.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, S., Dent, R., Harper, M. E., Stuart, J., & McPherson, R. (2011). Blood gene expression reveal pathway differences between diet-sensitive and resistant obese subjects prior to caloric restriction. Obesity, 19, 457–463.

    Article  PubMed  Google Scholar 

  • Gungor, N., Saad, R., Janosky, J., & Arslanian, S. (2004). Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. Journal of Pediatrics, 144, 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Harden, K. A., Cowan, P. A., Velasquez-Mieyer, P., & Patton, S. B. (2007). Effects of lifestyle intervention and metformin on weight management and markers of metabolic syndrome in obese adolescents. Journal of the American Academy of Nurse Practitioners, 19, 368–377.

    Article  PubMed  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Hivert, M.-F., Sun, Q., Shrader, P., Mantzoros, C. S., Meigs, J. B., & Hu, F. B. (2011). Higher adiponectin levels predict greater weight gain in healthy women in the nurses’ health study. Obesity, 19, 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Illig, T., Gieger, C., Zhai, G., et al. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42, 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, R. L., Zhao, Y., Koonen, D. P. Y., et al. (2010). Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity. Journal of Biological Chemistry, 285, 22403–22413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra, S. P. (2008). Central leptin insufficiency syndrome: An interactive etiology for obesity, metabolic and neural diseases and for designing new therapeutic interventions. Peptides, 29, 127–138.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinova, S. V., Tell, G. S., Vollset, S. E., Nygård, O., Bleie, Ø., & Ueland, P. M. (2008). Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. Journal of Nutrition, 138, 914–920.

    CAS  PubMed  Google Scholar 

  • Kromeyer-Hauschild, K., Gläßer, N., & Zellner, K. (2008). Waist circumference percentile in Jena children (Germany) 6- to 18-years of age. Aktuel Ernaehr Med, 33, 116–122.

    Article  Google Scholar 

  • Kromeyer-Hauschild, K., Wabitsch, M., Kunze, D., et al. (2001). Perzentile für den body-mass-index für das Kindes-und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd, 149, 807–818.

    Article  Google Scholar 

  • Li, Z., & Vance, D. E. (2008). Phosphatidylcholine and choline homeostasis. Journal of Lipid Research, 49, 1187–1194.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, K. A., Garber, A. K., Mietus-Snyder, M. L., et al. (2009). A clinic-based lifestyle intervention for pediatric obesity: Efficacy and behavioral and biochemical predictors of response. Journal of Pediatric Endocrinology and Metabolism, 22, 805–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall, W. A., & Tanner, J. M. (1969). Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood, 44, 291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall, W. A., & Tanner, J. M. (1970). Variations in the pattern of pubertal changes in boys. Archives of Disease in Childhood, 45, 13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28, 412–419.

    Article  CAS  PubMed  Google Scholar 

  • Mihalik, S. J., Michaliszyn, S. F., De Las Heras, J., et al. (2012). Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: Evidence for enhanced mitochondrial oxidation. Diabetes Care, 35, 605–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, D. S., McCabe, G. P., Duckworth, W. M., & Sclove, S. L. (2003). Bootstrap methods and permutation tests. In D. Moore (Ed.), The practice of business statistics companion. San Francisco: W.H. Freeman.

    Google Scholar 

  • Murer, S. B., Knöpfli, B. H., Aeberli, I., et al. (2011). Baseline leptin and leptin reduction predict improvements in metabolic variables and long-term fat loss in obese children and adolescents: A prospective study of an inpatient weight-loss program. American Journal of Clinical Nutrition, 93, 695–702.

    Article  CAS  PubMed  Google Scholar 

  • National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. (2004). The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics, 114, 555–576.

    Article  Google Scholar 

  • Oude Luttikhuis, H., Baur, L., Jansen, H., et al. (2009). Interventions for treating obesity in children. Cochrane Database of Systematic Reviews, (1), CD001872. doi:10.1002/14651858.CD001872.pub2.

  • Pathmasiri, W., Pratt, K. J., Collier, D. N., Lutes, L. D., McRitchie, S., & Sumner, S. C. J. (2012). Integrating metabolomic signatures and psychosocial parameters in responsivity to an immersion treatment model for adolescent obesity. Metabolomics, 8, 1037–1051.

    Article  CAS  Google Scholar 

  • Ploner, A. (2011). Heatplus: Heatmaps with row and/or column covariates and colored clusters.

  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Radmacher, M. D., McShane, L. M., & Simon, R. (2002). A paradigm for class prediction using gene expression profiles. Journal of Computational Biology, 9, 505–511.

    Article  CAS  PubMed  Google Scholar 

  • Reinehr, T. (2011). Effectiveness of lifestyle intervention in overweight children. The Proceedings of the Nutrition Society, 70, 494–505.

    Article  PubMed  Google Scholar 

  • Reinehr, T., & Andler, W. (2004). Changes in the atherogenic risk factor profile according to degree of weight loss. Archives of Disease in Childhood, 89, 419–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinehr, T., Brylak, K., Alexy, U., Kersting, M., & Andler, W. (2003). Predictors to success in outpatient training in obese children and adolescents. International Journal of Obesity and Related Metabolic Disorders, 27, 1087–1092.

    Article  CAS  PubMed  Google Scholar 

  • Reinehr, T., De Sousa, G., Toschke, A. M., & Andler, W. (2006). Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. American Journal of Clinical Nutrition, 84, 490–496.

    CAS  PubMed  Google Scholar 

  • Reinehr, T., Kiess, W., Kapellen, T., & Andler, W. (2004). Insulin sensitivity among obese children and adolescents, according to degree of weight loss. Pediatrics, 114, 1569–1573.

    Article  PubMed  Google Scholar 

  • Reinehr, T., Kleber, M., De Sousa, G., & Andler, W. (2009). Leptin concentrations are a predictor of overweight reduction in a lifestyle intervention. International Journal of Pediatric Obesity, 4, 215–223.

    Article  PubMed  Google Scholar 

  • Römisch-Margl, W., Prehn, C., Bogumil, R., Röhring, C., Suhre, K., & Adamski, J. (2011). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 8, 133–142.

    Article  Google Scholar 

  • Sabin, M. A., Ford, A., Hunt, L., Jamal, R., Crowne, E. C., & Shield, J. P. H. (2007). Which factors are associated with a successful outcome in a weight management programme for obese children? Journal of Evaluation in Clinical Practice, 13, 364–368.

    Article  PubMed  Google Scholar 

  • Schwandt, P., Kelishadi, R., & Haas, G.-M. (2008). First reference curves of waist circumference for German children in comparison to international values: the PEP Family Heart Study. World Journal of Pediatrics, 4, 259–266.

    Article  PubMed  Google Scholar 

  • Shih, L.-Y., Liou, T.-H., Chao, J. C.-J., et al. (2006). Leptin, superoxide dismutase, and weight loss: Initial leptin predicts weight loss. Obesity, 14, 2184–2192.

    Article  CAS  PubMed  Google Scholar 

  • Smilowitz, J. T., Wiest, M. M., Watkins, S. M., et al. (2009). Lipid metabolism predicts changes in body composition during energy restriction in overweight humans. Journal of Nutrition, 139, 222–229.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, R. W., Jones, I. E., Williams, S. M., & Goulding, A. (2000). Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 years. American Journal of Clinical Nutrition, 72, 490–495.

    CAS  PubMed  Google Scholar 

  • Teixeira, P. J., Going, S. B., Houtkooper, L. B., et al. (2004). Pretreatment predictors of attrition and successful weight management in women. International Journal of Obesity and Related Metabolic Disorders, 28, 1124–1133.

    Article  CAS  PubMed  Google Scholar 

  • Thamer, C., Machann, J., Stefan, N., et al. (2007). High visceral fat mass and high liver fat are associated with resistance to lifestyle intervention. Obesity, 15, 531–538.

    Article  PubMed  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58, 267–288.

    Google Scholar 

  • Tschritter, O., Preissl, H., Hennige, A. M., et al. (2009). The insulin effect on cerebrocortical theta activity is associated with serum concentrations of saturated nonesterified fatty acids. Journal of Clinical Endocrinology and Metabolism, 94, 4600–4607.

    Article  CAS  PubMed  Google Scholar 

  • Tschritter, O., Preissl, H., Hennige, A. M., et al. (2012). High cerebral insulin sensitivity is associated with loss of body fat during lifestyle intervention. Diabetologia, 55, 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7, 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdich, C., Toubro, S., Buemann, B., et al. (2001). Leptin levels are associated with fat oxidation and dietary-induced weight loss in obesity. Obesity Research, 9, 452–461.

    Article  CAS  PubMed  Google Scholar 

  • Wabitsch, M., Hauner, H., Böckmann, A., Parthon, W., Mayer, H., & Teller, W. (1992). The relationship between body fat distribution and weight loss in obese adolescent girls. International Journal of Obesity and Related Metabolic Disorders, 16, 905–911.

    CAS  PubMed  Google Scholar 

  • Wahl, S., Yu, Z., Kleber, M., et al. (2012). Childhood obesity is associated with changes in the serum metabolite profile. Obesity Facts, 5, 660–670.

    Article  CAS  PubMed  Google Scholar 

  • Wajchenberg, B. L. (2000). Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocrine Reviews, 21, 697–738.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., Holst, C., Astrup, A., et al. (2012). Blood profiling of proteins and steroids during weight maintenance with manipulation of dietary protein level and glycaemic index. British Journal of Nutrition, 107, 106–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants from the German Federal Ministry of Education and Research (BMBF): Grant numbers 01GS0820 and 01GS0823 of the National Genome Research Network (NGFNplus), grant number 01GI0839 of the German Competence Network Obesity (consortium LARGE), grant number 0315494A of the Systems Biology of Metabotypes project (SysMBo), and grant number 03IS206IB of the Gani_Med project to WRM and the German Center for Diabetes Research (DZD e.V.). It was further supported by funding from the University of Witten/Herdecke and from the Helmholtz Zentrum München. I.K. and C.F. were supported by the European Union within the ERC grant LatentCauses. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We offer our sincere thanks to the participants of the study as well as their parents. We are grateful to Petra Nicklowitz for conducting the biochemical measurements. We thank Julia Scarpa, Werner Römisch-Margl, Katharina Sckell and Arsin Sabunchi for metabolomics measurements performed at the Helmholtz Zentrum München, Genome Analysis Center, Metabolomics Core Facility, Neuherberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Illig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, S., Holzapfel, C., Yu, Z. et al. Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics 9, 1157–1167 (2013). https://doi.org/10.1007/s11306-013-0550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0550-9

Keywords

Navigation