Skip to main content
Log in

Characterization of odorants in human urine using a combined chemo-analytical and human-sensory approach: a potential diagnostic strategy

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The volatile and odorous profile of human urine may be a rich source for physiological information and could increase our understanding of metabolization and excretion processes of low-molecular weight compounds originating from, for example, dietary or endogenous sources. However, the diagnostic potential of the urinary volatile fraction is not yet fully understood, probably due to the limited application of modern analytical tools in urine volatile analysis. Accordingly, the aim of this study was to evaluate a combined chemo-analytical and human-sensory approach for characterization of the human urine odorant composition. We used one- and two-dimensional high resolution gas chromatography–olfactometry/mass spectrometry to identify commonly occurring and potent odorants in human urine. The studies were carried out on both native urine and on urine that had been treated by glucuronidase assays, with analysis of the liberated odor-active compounds using the same techniques. Based on retention indices, odor qualities and intensities, and mass spectra compared to references, a total of 14 odorants were detected in the majority of the untreated urine samples, and 24 odorants in the glucuronidase-treated samples. A major part of the identified substances are reported here for the first time. Our results show that chemosensory approaches are a useful strategy for the characterization of the odorant profile of human urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Belitz, H.-D., Grosch, W., & Schieberle, P. (2008). Lehrbuch der Lebensmittelchemie (6th ed.). Berlin: Springer.

  • Bemelmans, J. M. H. (1979). Review of isolation and concentration techniques. In D. G. Land & H. E. Nursten (Eds.), Progress in flavour research (pp. 79–88). London: Applied Science Publisher.

    Google Scholar 

  • Bestmann, H. J., Haberkorn, K., Vostrowsky, O., Ferstl, R., & Eggert, F. (1996). GC profiles of volatile constituents from human urine obtained by closed loop stripping, purge and trap technique and simultaneous steam distillation–extraction. Zeitschrift Fur Naturforschung C—A Journal of Biosciences, 51(11–12), 849–852.

    CAS  Google Scholar 

  • Bieniek, G. (2003). Simultaneous determination of 2-methoxyphenol, 2-methoxy-4-methylphenol, 2,6-dimethoxyphenol and 4′-hydroxy-3′-methoxyacetophenone in urine by capillary gas chromatography. Journal of Chromatography B, 795(2), 389–394.

    Article  CAS  Google Scholar 

  • Bieniek, G., Kurkiewicz, S., & Wilczok, T. (2004). Occupational exposure to aromatic hydrocarbons at a coke plant: Part I. Identification of hydrocarbons in air and their metabolites in urine by a gas chromatography–mass spectrometry method. Journal of Occupational Health, 46(3), 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Birkett, A. M., Jones, G. P., & Muir, J. G. (1995). Simple high-performance liquid chromatogrphic analysis of phenol and p-cresol in urine and feces. Journal of Chromatography B, 674, 187–191.

    Article  CAS  Google Scholar 

  • Blank, I. (1996). Gas chromatography–olfaktometry in food aroma analysis. In R. Marsili (Ed.), Techniques for analyzing food aroma (pp. 293–329). New York: Marcel Dekker.

    Google Scholar 

  • Bolodeoku, J., & Donaldson, D. (1996). Urinalysis in clinical diagnosis. Journal of Clinical Pathology, 49(8), 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Brahmachary, R. L. (1996). The expanding world of 2-acetyl-1-pyrroline. Current Science, 71(4), 257–258.

    CAS  Google Scholar 

  • Buchanan, D. N., & Thoene, J. G. (1985). Volatile carboxylic-acid profiling in physiological fluids—Direct injection into a gas-chromatograph mass-spectrometer. Clinica Chimica Acta, 145(2), 183–191.

    Article  CAS  Google Scholar 

  • Buettner, A., & Schieberle, P. (2001). Evaluation of aroma differences between hand-squeezed juices from valencia late and navel oranges by quantitation of key odorants and flavor reconstitution experiments. Journal of Agricultural and Food Chemistry, 49, 2387–2394.

    Article  PubMed  CAS  Google Scholar 

  • Burke, D. G., Halpern, B., Malegan, D., McCairns, E., Danks, D., Schlesinger, P., et al. (1983). Profiles of urinary volatiles from metabolic disorders characterized by unusual odors. Clinical Chemistry, 29(10), 1834–1838.

    PubMed  CAS  Google Scholar 

  • Buttery, R. G., Ling, L. C., Juliano, B. O., & Turnbaugh, J. G. (1983). Cooked rice aroma and 2-acetyl-1-pyrroline. Journal of Agricultural and Food Chemistry, 31(4), 823–826.

    Article  CAS  Google Scholar 

  • Chalmers, R. A., Bickle, S., & Watts, R. W. E. (1974). Method for determination of volatile organic acids in aqueous solutions and urine, and results obtained in propionic acidemia, beta-methylcrotonylglycinuria and methylmalonic aciduria. Clinica Chimica Acta, 52(1), 31–41.

    Article  CAS  Google Scholar 

  • Chamberlin, B., & Sweeley, C. (1987). Metabolic profiles of urinary organic acids recovered from absorbent filter paper. Clinical Chemistry, 33(4), 572.

    PubMed  CAS  Google Scholar 

  • Chung, T. C., Chao, M. C., & Wu, H. L. (2007). A sensitive liquid chromatographic method for the analysis of isovaleric and valeric acids in urine as fluorescent derivatives. Journal of Chromatography A, 1156(1–2), 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Dills, R., Zhu, X., & Kalman, D. (2001). Measurement of urinary methoxyphenols and their use for biological monitoring of wood smoke exposure. Environmental Research, 85(2), 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Dills, R., Paulsen, M., Ahmad, J., Kalman, D., Elias, F., & Simpson, C. (2006). Evaluation of urinary methoxyphenols as biomarkers of woodsmoke exposure. Environmental Science and Technology, 40(7), 2163–2170.

    Article  PubMed  CAS  Google Scholar 

  • Edman, D. C., & Brooks, J. B. (1983). Gas–liquid chromatography-frequency pulse-modulated electron-capture detection in the diagnosis of infectious diseases. Journal of Chromatography, 274, 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Engel, W. (2001). In vivo studies on the metabolism of the monoterpenes S-(+)- and R-(−)-carvone in humans using the metabolism of ingestion-correlated amounts (MICA) approach. Journal of Agricultural and Food Chemistry, 49(8), 4069–4075.

    Article  PubMed  CAS  Google Scholar 

  • Engel, W. (2003). In vivo studies on the metabolism of the monoterpene pulegone in humans using the metabolism of ingestion-correlated amounts (MICA) approach: Explanation for the toxicity differences between (S)-(−)- and (R)-(+)-pulegone. Journal of Agricultural and Food Chemistry, 51(22), 6589–6597. doi:10.1021/jf034702u.

    Article  PubMed  CAS  Google Scholar 

  • Engel, W., Bahr, W., & Schieberle, P. (1999). Solvent assisted flavour evaporation—A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. European Food Research and Technology, 209(3–4), 237–241.

    Article  CAS  Google Scholar 

  • Ghoos, Y., Claus, D., Geypens, B., Hiele, M., Maes, B., & Rutgeerts, P. (1994). Screening method for the determination of volatiles in biomedical samples by means of an off-line closed-loop trapping system and high-resolution gas chromatography-ion trap detection. Journal of Chromatography A, 665(2), 333–345.

    Article  PubMed  CAS  Google Scholar 

  • Grosch, W. (2001). Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chemical Senses, 26(5), 533–545.

    Article  PubMed  CAS  Google Scholar 

  • Guernion, N., Ratcliffe, N. M., Spencer-Phillips, P. T. N., & Howe, R. A. (2001). Identifying bacteria in human urine: Current practice and the potential for rapid, near-patient diagnosis by sensing volatile organic compounds. Clinical Chemistry and Laboratory Medicine, 39(10), 893–906.

    Article  PubMed  CAS  Google Scholar 

  • Heinlein, A., & Buettner, A. (2011) Monitoring of hop aroma compounds in an in vitro digestion model. In Proceedings of the 13th Weurman flavour research symposium. Zaragoza: Hiberus Hotel & Conference Center.

  • Hoffmann, K. J., & Weidolf, L. (1985). Identification of metabolites in rat urine. Biomedical Mass Spectrometry, 12(8), 414–423. doi:10.1002/bms.1200120811.

    Article  PubMed  CAS  Google Scholar 

  • Hoggard, J., Siegler, W., & Synovec, R. (2009). Toward automated peak resolution in complete GC × GC–TOFMS chromatograms by PARAFAC. Journal of Chemometrics, 23(7 8), 421–431.

    Google Scholar 

  • Horst, K., & Rychlik, M. (2010). Quantification of 1,8-cineol and of its metabolites in humans using stable isotope dilution assays. Molecular Nutrition & Food Research, 54, 1515–1529.

    Article  CAS  Google Scholar 

  • Hrivnák, J., Ovicova, E. K., Tolgyessy, P., & Ilavsky, J. (2009). Analysis of unmetabolized VOCs in urine by headspace solid-phase microcolumn extraction. Journal of Occupational Health, 51(2), 173–176.

    Article  PubMed  Google Scholar 

  • Humbert, J., Hammond, K., & Hathaway, W. (1970). Trimethylaminuria: the fish-odour syndrome. Lancet, 2(7676), 770.

    Article  PubMed  CAS  Google Scholar 

  • Jakubowska, N., Henkelmann, B., Schramm, K. W., & Namiesnik, J. (2009). Optimization of a novel procedure for determination of VOCs in water and human urine samples based on SBSE coupled with TD-GC-HRMS. Journal of Chromatographic Science, 47(8), 689–693.

    PubMed  CAS  Google Scholar 

  • King, R. A., May, B. L., Davies, D. A., & Bird, A. R. (2009). Measurement of phenol and p-cresol in urine and feces using vacuum microdistillation and high-performance liquid chromatography. Analytical Biochemistry, 384(1), 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K. E., Partridge, D. H., Robinson, A. B., Pauling, L., Flath, R. A., Mon, T. R., et al. (1973). Identification of volatile compounds in human urine. Journal of Chromatography, 85(1), 31–34.

    Article  PubMed  CAS  Google Scholar 

  • Mills, G. A., & Walker, V. (2000). Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials. Journal of Chromatography A, 902(1), 267–287.

    Article  PubMed  CAS  Google Scholar 

  • Mills, G. A., & Walker, V. (2001). Headspace solid-phase microexraction profiling of volatile compounds in urine: Application to metabolic investigations. Journal of Chromatography B, 753, 259–268.

    Article  CAS  Google Scholar 

  • Mitchell, S. C. (2001). Food idiosyncrasies: Beetroot and asparagus. Drug Metabolism and Disposition, 29(4), 539–543.

    PubMed  CAS  Google Scholar 

  • Neitzel, R., Naeher, L., Paulsen, M., Dunn, K., Stock, A., & Simpson, C. (2009). Biological monitoring of smoke exposure among wildland firefighters: A pilot study comparing urinary methoxyphenols with personal exposures to carbon monoxide, particular matter, and levoglucosan. Journal of Exposure Science & Environmental Epidemiology, 19(4), 349–358.

    Article  CAS  Google Scholar 

  • Pelchat, M. L., Bykowski, C., Duke, F. F., & Reed, D. R. (2011). Excretion and perception of a characteristic odor in urine after asparagus ingestion: A psychophysical and genetic study. Chemical Senses, 36(1), 9–17. doi:10.1093/chemse/bjq081.

    Article  PubMed  CAS  Google Scholar 

  • Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., et al. (2007). Individual and gender fingerprints in human body odour. Journal of the Royal Society Interface, 4(13), 331–340. doi:10.1098/rsif.2006.0182.

    Article  Google Scholar 

  • Perry, T. L., Hansen, S., Diamond, S., Bullis, B., Mok, C., & Melançon, S. B. (1970). Volatile fatty acids in normal human physiological fluids. Clinica Chimica Acta, 29(3), 369–374.

    Article  CAS  Google Scholar 

  • Podebrad, F., Heil, M., Reichert, S., Mosandl, A., Sewell, A. C., & Böhles, H. (1999). 4,5-Dimethyl-3-hydroxy-2[5H]-furanone (sotolone)—The odour of maple syrup urine disease. Journal of Inherited Metabolic Disease, 22, 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, G., Miller, M., McConnel.M.L., & Novotny, M. (1981). Metabolic abnormalities associated with diabetes mellitus, as investigated by gas chromatography and pattern-recognition analysis of profiles of volatile metabolites. Clinical Chemistry, 27(4), 580−585.

    Google Scholar 

  • Roscher, R., Koch, H., Herderich, M., Schreier, P., & Schwab, W. (1997). Identification of 2,5-dimethyl-4-hydroxy-3[2H]-furanone beta-d-glucuronide as the major metabolite of a strawberry flavour constituent in humans. Food and Chemical Toxicology, 35(8), 777–782.

    Article  PubMed  CAS  Google Scholar 

  • Schieberle, P., & Grosch, W. (1991). Potent odorants of the wheat bread crumb—Differences to the crust and effect of a longer dough fermentation. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 192(2), 130–135.

    Article  CAS  Google Scholar 

  • Sewell, A., Mosandl, A., & Bohles, H. (1999). False diagnosis of maple syrup urine disease owing to ingestion of herbal tea. New England Journal of Medicine, 341(10), 769.

    Article  PubMed  CAS  Google Scholar 

  • Shrestha, B., Li, Y., & Vertes, A. (2008). Rapid analysis of pharmaceuticals and excreted xenobiotic and endogenous metabolites with atmospheric pressure infrared MALDI mass spectrometry. Metabolomics, 4, 297–311.

    Article  CAS  Google Scholar 

  • Silva, C., Passos, M., & Camara, J. (2011). Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. British Journal of Cancer, 105(12), 1894–1904.

    Article  PubMed  CAS  Google Scholar 

  • Simerville, J. A., Maxted, W. C., & Pahira, J. J. (2005). Urinalysis: A comprehensive review. American Family Physician, 71(6), 1153–1162.

    PubMed  Google Scholar 

  • Smith, S., Burden, H., Persad, R., Whittington, K., de Lacy Costello, B., Ratcliffe, N. M., et al. (2008). A comparative study of the analysis of human urine headspace using gas chromatography-mass spectrometry. Journal of Breath Research, 037022, 037010. doi:10.1088/1752-7155/2/3/037022.

  • Soini, H. A., Bruce, K. E., Wiesler, D., David, F., Sandra, P., & Novotny, M. V. (2005). Stir bar sorptive extraction: A new quantitative and comprehensive sampling technique for determination of chemical signal profiles from biological media. Journal of Chemical Ecology, 31(2), 377–392. doi:10.1007/s10886-005-1347-8.

    Article  PubMed  CAS  Google Scholar 

  • Tienpont, B., David, F., Desmet, K., & Sandra, P. (2002). Stir bar sorptive extraction–thermal desorption–capillary GC-MS applied to biological fluids. Analytical and Bioanalytical Chemistry, 373(1), 46–55.

    Article  PubMed  CAS  Google Scholar 

  • Tienpont, B., David, F., Benijts, T., & Sandra, P. (2003). Stir bar sorptive extraction-thermal desorption-capillary GC-MS for profiling and target component analysis of pharmaceutical drugs in urine. Journal of Pharmaceutical and Biomedical Analysis, 32(4–5), 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Tschiersch, K., & Hoelzl, J. (1993). Absorption and excretion of apigenin, apigenin 7-glucoside and herniarin after oral administration of an extract of Matricaria recutita (L.) [Chamomilla recutita (L.)]. Pharmazie, 48(7), 554–555.

    PubMed  CAS  Google Scholar 

  • Van Den Dool, H., & Kratz, P. (1963). A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. Journal of Chromatography, 11, 463–471.

    Article  Google Scholar 

  • Wahl, H. G., Hoffmann, A., Luft, D., & Liebich, H. M. (1999). Analysis of volatile organic compounds in human urine by headspace gas chromatography-mass spectrometry with a multipurpose sampler. Journal of Chromatography A, 847(1–2), 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Walker, V., & Mills, G. A. (2001). Urine 4-heptanone: A beta-oxidation product of 2-ethylhexanoic acid from plasticisers. Clinica Chimica Acta, 306(1–2), 51–61.

    Article  CAS  Google Scholar 

  • Wang, L.-H. & Jiang, S.-Y. (2006). Simultaneous determination of urinary metabolites of methoxypsoralens in human and umbelliferae medicines by high-performance liquid chromatography. Journal of Chromatographic Science, 44, 473–478.

    Google Scholar 

  • White, R. H. (1975). Occurence of S-methyl thioesters in urines of humans after they have eaten asparagus. Science, 189, 810–811.

    Article  PubMed  CAS  Google Scholar 

  • Zeller, A., Horst, K., & Rychlik, M. (2009). Study of the metabolism of estragole in humans consuming fennel tea. Chemical Research in Toxicology, 22(12), 1929–1937. doi:10.1021/tx900236g.

    Article  PubMed  CAS  Google Scholar 

  • Zlatkis, A., & Liebich, H. M. (1971). Profile of volatile metabolites in human urine. Clinical Chemistry, 17(7), 592–594.

    PubMed  CAS  Google Scholar 

  • Zlatkis, A., Bertsch, W., Lichtenstein, H. A., Tishbee, A., Shunbo, F., Liebich, H. M., et al. (1973a). Profile of volatile metabolites in urine by gas-chromatography-mass spectrometry. Analytical Chemistry, 45(4), 763–767.

    Article  PubMed  CAS  Google Scholar 

  • Zlatkis, A., Lichtenstein, H. A., Tishbee, A., Bertsch, W., Shunbo, F., & Liebich, H. M. (1973b). Concentration and analysis of volatile urinary metabolites. Journal of Chromatographic Science, 11, 299–302.

    PubMed  CAS  Google Scholar 

  • Zlatkis, A., Brazell, R., & Poole, C. (1981). The role of organic volatile profiles in clinical diagnosis. Clinical Chemistry, 27(2), 789–797.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Federal Ministry of Education and Research (BMBF). The authors are solely responsible for the contents of this publication. We are grateful to Prof. Horst-Christian Langowski of the Fraunhofer IVV, Freising, Germany, and to Prof. Monika Pischetsrieder, University of Erlangen, for supporting our scientific work and for fruitful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Buettner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagenstaller, M., Buettner, A. Characterization of odorants in human urine using a combined chemo-analytical and human-sensory approach: a potential diagnostic strategy. Metabolomics 9, 9–20 (2013). https://doi.org/10.1007/s11306-012-0425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0425-5

Keywords

Navigation