Skip to main content
Log in

Characterization of the biochemical variability of bovine milk using metabolomics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Bovine milk contains a complex mixture of metabolites, which were identified by liquid and gas chromatography mass spectrometry methods. With the aid of new software methods, spectral assignment was carried out, enabling the identification of 223 metabolites. Those included amino acids, lipids, carbohydrates, nucleotides, energy metabolites, vitamins, cofactors and short peptides. Metabolite concentrations were compared between 10 bovine milk varieties, differing in brand, fat content, expiry date, package type and farming method. Principal components analysis showed a clear separation of the different milk varieties. Whole milk could be distinguished from reduced fat and fat free milk by higher lipid metabolites like free fatty acids, cholesterol and 1,2-dipalmitoylglycerol. But also, the reduced fat varieties had lower levels of vitamin E. In comparing organic to conventional milk, 14 named metabolites were statistically different between the two farming methods. This shows the potential of identifying farming-method-specific biomarkers upon analysis and validation of a larger sample size. Finally, high biochemical variability was shown in conventional whole milk derived from different producers. The distinct biochemical profiles of milk varieties shows the utility of metabolic profiling for authentication of milk varieties, and for deriving potential markers that can serve as signatures for a particular milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auldist, M. J., Walsh, B. J., & Thomson, N. A. (1998). Seasonal and lactational influences on bovine milk composition in New Zealand. The Journal of Dairy Research, 65, 401–411. doi:10.1017/S0022029998002970.

    Article  CAS  PubMed  Google Scholar 

  • Bassette, R., Fung, D. Y., & Mantha, V. R. (1986). Off-flavors in milk. Critical Reviews in Food Science and Nutrition, 24, 1–52.

    Article  CAS  PubMed  Google Scholar 

  • Belton, P. S., Colquhoun, I. J., Kemsley, E. K., et al. (1998). Application of chemometrics to the 1H NMR spectra of apple juices: Discrimination between apple varieties. Food Chemistry, 61, 207–213. doi:10.1016/S0308-8146(97)00103-9.

    Article  CAS  Google Scholar 

  • Bendall, J. G. (2001). Aroma compounds of fresh milk from New Zealand cows fed different diets. Journal of Agricultural and Food Chemistry, 49, 4825–4832. doi:10.1021/jf010334n.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289–300.

    Google Scholar 

  • Bergamo, P., Fedele, E., Iannibelli, L., & Marzillo, G. (2003). Fat-soluble vitamin contents and fatty acid composition in organic and conventional Italian dairy products. Food Chemistry, 82, 625–631. doi:10.1016/S0308-8146(03)00036-0.

    Article  CAS  Google Scholar 

  • Brescia, M. A., Caldarola, V., De Giglio, A., Benedetti, D., Fanizzi, F. P., & Sacco, A. (2002). Characterization of the geographical origin of Italian red wine based on traditional and nuclear magnetic resonance spectrometric determinations. Analytica Chimica Acta, 50, 3098–3103.

    Google Scholar 

  • Butler, G., Nielsen, J. H., Slots, T., Seal, C., Eyre, M. D., Anderson, R., et al. (2008). Fatty acid and fat-soluble antioxidant concentrations in milk from high- and low-input conventional and organic systems: Seasonal variation. Journal of the Science of Food and Agriculture, 88, 1431–1441. doi:10.1002/jsfa.3235.

    Article  CAS  Google Scholar 

  • Cavaliere, B., De Nino, A., Hayet, F., et al. (2007). A metabolomic approach to the evaluation of the origin of extra virgin olive oil: A convenient statistical treatment of mass spectrometric analytical data. Journal of Agricultural and Food Chemistry, 55, 1454–1462. doi:10.1021/jf062929u.

    Article  CAS  PubMed  Google Scholar 

  • Charlton, A. J., Farrington, W. H. H., & Brereton, P. (2002). Application of 1NMR and multivariate statistics for screening complex mixtures: Quality control and authenticity of instant coffee. Journal of Agricultural and Food Chemistry, 50, 3098–3103. doi:10.1021/jf011539z.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y. H., Sertic, S., Kim, H. K., et al. (2005). Classification of Ilex species bases on metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis. Journal of Agricultural and Food Chemistry, 53, 1237–1245. doi:10.1021/jf0486141.

    Article  CAS  PubMed  Google Scholar 

  • Clifford, M. N., Copeland, E. L., Bloxsidge, J. P., & Mitchell, L. A. (2000). Hippuric acid as a major excretion product associated with black tea consumption. Xenobiotica, 30, 317–326. doi:10.1080/004982500237703.

    Article  CAS  PubMed  Google Scholar 

  • Croissant, A. E., Washburn, S. P., Dean, L. L., & Drake, M. A. (2007). Chemical properties and consumer perception of fluid milk from conventional and pasture-based production systems. Journal of Dairy Science, 90, 4942–4953. doi:10.3168/jds.2007-0456.

    Article  CAS  PubMed  Google Scholar 

  • Del Campo, G., Santos, J. I., Berregi, I., & Munduate, A. (2005). Differentiation of Basque cider apple juices from different cultivars by means of chemometric techniques. Food Control, 16, 549–555. doi:10.1016/j.foodcont.2004.05.013.

    Article  CAS  Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78. doi:10.1002/mas.20108.

    Article  CAS  PubMed  Google Scholar 

  • Dewhurst, R. J., Fisher, W. J., Tweed, J. K., & Wilkins, R. J. (2003). Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. Journal of Dairy Science, 86, 2598–2611.

    CAS  PubMed  Google Scholar 

  • Duarte, I., Barros, A., Belton, P. S., et al. (2002). High-resolution nuclear magnetic resonance spectroscopy and multivariate analysis for the characterization of beer. Journal of Agricultural and Food Chemistry, 50, 2475–2481. doi:10.1021/jf011345j.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, K. A., Innocent, G., Grove-White, D., et al. (2006). Comparing the fatty acid composition of organic and conventional milk. Journal of Dairy Science, 89, 1938–1950.

    CAS  PubMed  Google Scholar 

  • Forveille, L., Vercauteren, J., & Rutledge, D. N. (1996). Multivariate statistical analysis of two-dimensional NMR data to differentiate grapevine cultivars and clones. Food Chemistry, 57, 441–450. doi:10.1016/0308-8146(95)00220-0.

    Article  Google Scholar 

  • Fox, P. F., & McSweeney, P. L. H. (1998). Dairy chemistry and biochemistry. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • German, J. B., & Dillard, C. J. (2006). Composition, structure and absorption of milk lipids: A source of energy, fat-soluble nutrients and bioactive molecules. Critical Reviews in Food Science and Nutrition, 46, 57–92. doi:10.1080/10408690590957098.

    Article  CAS  PubMed  Google Scholar 

  • Goff, H. D., & Griffiths, M. W. (2006). Major advances in fresh milk and milk products: Fluid milk products and frozen desserts. Journal of Dairy Science, 89, 1163–1173.

    CAS  PubMed  Google Scholar 

  • Guy, P. A., & Fenaille, F. (2006). Contribution of mass spectrometry to assess quality of milk-based products. Mass Spectrometry Reviews, 25, 290–326. doi:10.1002/mas.20074.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E., Loo, R. L., Stamler, J., et al. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453, 396–401. doi:10.1038/nature06882.

    Article  CAS  PubMed  Google Scholar 

  • Jahreis, G., Fritsche, J., & Steinhart, H. (1996). Monthly variations of milk composition with special regard to fatty acids depending on season and farm management systems—conventional versus ecological. Fett Lipid, 98, 356–359. doi:10.1002/lipi.19960981103.

    Article  CAS  Google Scholar 

  • Jenkins, T. C., & McGuire, M. A. (2006). Major advances in nutrition: Impact on milk composition. Journal of Dairy Science, 89, 1302–1310.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, R. G. (1995). Handbook of milk composition. San Diego: Academic Press.

    Google Scholar 

  • Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85, 295–350.

    Article  CAS  PubMed  Google Scholar 

  • Karagül-Yüceer, Y., Cadwallader, K. R., & Drake, M. (2002). Volatile flavor components of stored nonfat dry milk. Journal of Agricultural and Food Chemistry, 50, 305–312. doi:10.1021/jf010648a.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, M. L., Kolver, E. S., Bauman, D. E., Van Amburgh, M. E., & Muller, L. D. (1998). Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating cows. Journal of Dairy Science, 81, 1630–1636.

    Article  CAS  PubMed  Google Scholar 

  • Kruger, N. J., & von Schaewen, A. (2003). The oxidative pentose phosphate pathway: Structure and organisation. Current Opinion in Plant Biology, 6, 236–246. doi:10.1016/S1369-5266(03)00039-6.

    Article  CAS  PubMed  Google Scholar 

  • Mottram, H. R., & Evershed, R. P. (2001). Elucidation of the composition of bovine milk fat triacylglycerols using high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. Journal of Chromatography A, 926, 239–253. doi:10.1016/S0021-9673(01)01048-2.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, S. P., Jayarao, B. M., & Almeida, R. A. (2005). Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease, 2, 115–129. doi:10.1089/fpd.2005.2.115.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y. H., Fox, L. K., Hamilton, M. J., & Davis, W. C. (1992). Bovine mononuclear leukocyte subpopulations in peripheral blood and mammary gland secretions during lactation. Journal of Dairy Science, 75, 998–1006.

    Article  CAS  PubMed  Google Scholar 

  • Phipps, A. N., Stewart, J., Wright, B., & Wilson, I. D. (1998). Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica, 28, 527–537. doi:10.1080/004982598239443.

    Article  CAS  PubMed  Google Scholar 

  • Rechner, A. R., Kuhnle, G., Hu, H., et al. (2002). The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radical Research, 36, 1229–1241.

    Article  CAS  PubMed  Google Scholar 

  • Siciliano, R., Rega, B., Amoresano, A., & Pucci, P. (2000). Modern mass spectrometric methodologies in monitoring milk quality. Analytical Chemistry, 72, 408–415. doi:10.1021/ac990590n.

    Article  CAS  PubMed  Google Scholar 

  • Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100, 9440–9445. doi:10.1073/pnas.1530509100.

    Article  CAS  PubMed  Google Scholar 

  • Toledo, P., Andrén, A., & Björck, L. (2002). Composition of raw milk from sustainable production systems. International Dairy Journal, 12, 75–80. doi:10.1016/S0958-6946(01)00148-0.

    Article  CAS  Google Scholar 

  • Vicini, J., Etherton, T., Kris-Etherton, P., Ballam, J., Denham, S., Staub, R., et al. (2008). Survey of retail milk composition as affected by label claims regarding farm-management practices. Journal of the American Dietetic Association, 108, 1198–1203. doi:10.1016/j.jada.2008.04.021.

    Article  PubMed  Google Scholar 

  • Vogels, J. T. W. E., Terwel, L., Tas, A. C., van den Berg, F., Dukel, F., & van der Greef, J. (1996). Detection of adulteration in orange juices by a new screening method using proton NMR spectroscopy in combination with pattern recognition techniques. Journal of Agricultural and Food Chemistry, 44, 175–180. doi:10.1021/jf950062m.

    Article  CAS  Google Scholar 

  • Walsh, M. C., Brennan, L., Pujos-Guillot, E., et al. (2007). Influence of acute phytochemical intake on human urinary metabolomic profiles. The American Journal of Clinical Nutrition, 86, 1687–1693.

    CAS  PubMed  Google Scholar 

  • Webb, B. H., Johnson, A. H., & Alford, J. A. (1965). Fundamentals of dairy chemistry. Westport: AVI Publishing.

    Google Scholar 

  • White, S. L., Bertrand, J. A., Wade, M. R., Washburn, S. P., Green, J. T., Jr, & Jenkins, T. C. (2001). Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or a total mixed ration. Journal of Dairy Science, 84, 2295–2301.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt J. Boudonck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boudonck, K.J., Mitchell, M.W., Wulff, J. et al. Characterization of the biochemical variability of bovine milk using metabolomics. Metabolomics 5, 375–386 (2009). https://doi.org/10.1007/s11306-009-0160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-009-0160-8

Keywords

Navigation