Skip to main content
Log in

Polyamine oxidase (PAO)–mediated polyamine catabolism plays potential roles in peach (Prunus persica L.) fruit development and ripening

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Recently, there is an increased interest in the function of polyamine (PA) catabolism during fruit ripening, but little is known about its role during the ripening of peach (Prunus persica L.). In this study, the contents of both free and conjugated PAs markedly decreased as the peach fruit ripened. However, RNA-seq analysis showed that the transcript levels of PA synthesis–related genes increased, suggesting that the decreasing PA content during peach ripening was associated with PA catabolism. To better understanding the function of PA catabolism in peach ripening, genes encoding potential polyamine oxidases (PAOs), which are involved in PA catabolism, were identified across the peach genome. Four putative PAO genes (PpePAO1-PpePAO4) were identified in peach using the recently released genome database. The mRNA level of PpePAO1 was significantly increased during peach fruit ripening. Detection of free PAs in tobacco leaves transiently over-expressing PpePAO1 suggested that this gene is probably involved in terminal catabolism of PA. Treatment with the PAO inhibitor guazatine significantly reduced ethylene production and flesh softening of peach fruit, decreased the expression levels of fruit ripening-related genes, and significantly decreased the expression level of PpePAO1 and PAO activity, while PA contents were dramatically higher compared to control treatments. Our results suggests that PpePAO1-mediated PA catabolism is associated with decreased PA content during peach fruit ripening. These data provide valuable knowledge for better understanding the roles of PA catabolism in peach development and ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PAs:

Polyamines

PAO:

Polyamine oxidase

CuAO:

Copper-containing amine oxidase

FAD:

Flavin adenine dinucleotide

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

Dap:

1,3-Diaminopropane

PpePAO :

Peach polyamine oxidase

qPCR:

Real-time quantitative PCR

PCD:

Programmed cell death

PTSl:

Peroxisomal targeting signals

References

  • Agudelo-Romero P, Bortolloti C, Pais MS (2013) Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiol Biochem 67:105–119

    Article  CAS  PubMed  Google Scholar 

  • Agudelo-Romero P, Ali K, Choi YH, Sousa L, Verpoorte R, Tiburcio AF, Fortes AM (2014) Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. Plant Physiol Biochem 74:141–155

  • Ahou A, Martignago D, Alabdallah O, Tavazza R, Stano P, Macone A, Pivato M, Masi A, Rambla JL, Vera-Sirera F, Angelini R, Federico R, Tavladoraki P (2014) A plant spermine oxidase/dehydrogenase regulated by the proteasome and polyamine. J Exp Bot 65:1585–1603

    Article  CAS  PubMed  Google Scholar 

  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  CAS  PubMed  Google Scholar 

  • Bregoli AM, Scaramagli S, Costa G, Sabatini E, Ziosi V, Biondi S (2002) Peach (Prunus persica) fruit ripening: aminoethoxyvinylglycine (AVG) and exogenous polyamines affect ethylene emission and flesh firmness. Physiol Plant 114:472–481

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M,Tavladoraki P,Di Agostino S,Angelini R,Federico R,Mariottini P (2000) Isolation and characterization of three polyamine oxidase genes from Zea mays. Plant Physiol Biochem 38(9):667–677

  • Cervelli M, Cona A, Angelini R, Polticelli F, Federico R, Mariottini P (2001) A barley polyamine oxidase isoform with distinct structural features and subcellular localization. Eur J Biochem 268:3816–3830

    Article  CAS  PubMed  Google Scholar 

  • Cheng X-Q, Zhu X-F, Tian W-G, Cheng W-H, Sun HJ, Jin S-X, Zhu H-G (2017) Genome-wide identification and expression analysis of polyamine oxidase genes in upland cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Culture (PCTOC) 129(2):237–249

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Function of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Ge CM, Wang RX, Wang R, Wang H, Chen W, Fu Z, Jiang X, Li J, Wang Y (2010) The BUD2 mutation affects plant architecture through altering cytokinin and auxin responses in Arabidopsis. Cell Res 20:576–586

    Article  CAS  PubMed  Google Scholar 

  • Fincato P, Moschou PN, Spedaletti V, Tavazza R, Angelini R, Federico R, Roubelakis-Angelakis KA, Tavladoraki P (2011) Functional diversity inside the Arabidopsis polyamine oxidase gene family. J Exp Bot 62:1155–1168

    Article  CAS  PubMed  Google Scholar 

  • Fu XZ, Chen CW, Wang Y, Liu JH, Moriguchi T (2011) Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration. BMC Plant Biol 11:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Wei W, Zhao X, Tian XL, Fan ZQ, Zhang YP, Jing Y, Meng LH et al (2018) A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Hortic Res 5:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghuge SA, Carucci A, Rodrigues-Pousada RA, Tisi A, Franchi S, Tavladoraki P, Angelini R, Cona A (2015) The apoplastic copper AMINE OXIDASE1 mediates jasmonic acid-induced protoxylem differentiation in Arabidopsis roots. Plant Physiol 168:690–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Jimenez MC, Paredes MA, Gallardo M (2010) Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. Planta 232:629–647

    Article  CAS  PubMed  Google Scholar 

  • Groβ F, Rudolf EE, Thiele B, Durner J, Astier J (2017) Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. J Exp Bot 68:2149–2162

    Article  Google Scholar 

  • Guo J, Wang S, Yu X, Dong R, Li Y, Mei X, Shen Y (2018) Polyamines regulate strawberry fruit ripening by ABA, IAA, and ethylene. Plant Physiol 177:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Huang B, Jia D, Mann T, Jiang X, Qiu Y, Niitsu M, Berberich T, Kusano T, Liu T (2018) Identification of seven polyamine oxidase genes in tomato (Solanum lycopersicum L.) and their expression profiles under physiological and various stress conditions. J Plant Physiol 228:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hatmi S, Trotel-Aziz P, Villaume S, Couderchet M, Clément C, Aziz A (2013) Osmotic stress-induced polyamine oxidati-on mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. J Exp Bot 65:75–88

    Article  PubMed  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  CAS  PubMed  Google Scholar 

  • Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen XY, Siemsen T, Morgenstern B, Meinicke P, Reumann S (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23:1556–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JH, Moriguchi T (2007) Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. Plant Cell Rep 26:125–131

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Kim DW, Niitsu M, Maeda S, Watanabe M, Kamio Y, Berberich T, Kusano T (2014) Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. Plant Cell Physiol 55:1110–1122

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma NN, Feng HL, Meng X, Li D, Yang DY, Wu CG, Meng QW (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Møller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase. Plant J 13:781–791

    Article  PubMed  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015

    Article  CAS  PubMed  Google Scholar 

  • Naconsie M, Kato K, Shoji T, Hashimoto T (2014) Molecular evolution of N-methylputrescine oxidase in tobacco. Plant Cell Physiol 55:436–444

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Kim DW, Watanabe K, Sasaki A, Niitsu M, Berberich T, Kusano T, Takahashi Y (2012) Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion. Amino Acids 42:867–876

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Zeng WF, Niu L, Lu ZH, Liu H, Cui GC, Zhu YQ, Chu JF, Li WP, Fang WC, Cai ZG, Li GH, Wang ZQ (2015) PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. J Exp Bot 66:7031–7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    Article  CAS  PubMed  Google Scholar 

  • Parra-Lobato MC, Gomez-Jimenez MC (2011) Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. J Exp Bot 62:4447–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirona R, Eduardo I, Pacheco I, Linge CDS, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Planas-Portell, J., Gallart, M., Tiburcio, A.F., Altabella,T., 2013. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol 13, 109.

  • Rea G, Laurenzi M, Tranquilli E, D’Ovidio R, Federico R, Angelini R (1998) Developmentally and wound-regulated expression of the gene encoding a cell wall copper amine oxidase in chickpea seedlings. FEBS Lett 437:177–182

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Babujee L,Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N,Franziska L, Weckwerth W, Jahn O (2007) Proteome Analysis ofLeaf Peroxisomes Reveals Novel Targeting Peptides, Metabolic Pathways, and Defense Mechanisms. Plant Cell 19(10):3170–3193

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Smith TA (1972) Purification and properties of the polyamine oxidase of barley plants. Phytochemistry 11:899–910

    Article  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Ono K, Akamine Y, Asano T, Ezaki M, Mouri I (2018) Highly-expressed polyamine oxidases catalyze polyamine back conversion in Brachypodium distachyon. J Plant Res 131:341–348

    Article  CAS  PubMed  Google Scholar 

  • Tatsuki M, Nakajim N, Fujii H, Shimada T, Nakano M, Hayashi K, Hayama H, Yoshioka H, Nakamura Y (2013) Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J Exp Bot 64:1049–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavladoraki P, Rossi MN, Saccuti G, Perez-Amador MA, Polticelli F, Angelini R, Ferderico R (2006) Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol 141:1519–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tipping AJ, McPherson MJ (1995) Cloning and molecular analysis of the pea seedling copper amine oxidase. J Biol Chem 270:16939–16946

    Article  CAS  PubMed  Google Scholar 

  • Torrigiani P, Bressanin D, Beatriz Ruiz K, Tadiello A, Trainotti L, Bonghi C, Ziosi V, Costa G (2012) Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiol Plant 146:86–98

    Article  CAS  PubMed  Google Scholar 

  • Trainotti L, Zanin D, Casadoro G (2003) A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peaches. J Exp Bot 54:1821–1832

    Article  CAS  PubMed  Google Scholar 

  • Tsaniklidis G, Kotsiras A, Tsafouros A (2016) Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development. Plant Physiol Biochem 100:27–36

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liu JH (2015) Genome-wide identification and expression analysis of the polyamine oxidase gene family in sweet orange (Citrus sinensis). Gene 555:421–429

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liu JH (2016) CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress. Sci Rep 6:31384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wu H, Liu JH (2017) Genome-wide identification and expression profiling of copper-containing amine oxidase genes in sweet orange (Citrus sinensis). Tree Genet Genomes 13:31

    Article  Google Scholar 

  • Wang X, Zeng W, Ding YF, Wang Y, Niu L, Yao JL, Pan L, Lu ZH, Cui GC, Li GH, Wang ZQ (2019) Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening. Plant Sci 283:116–126

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Shang Z, Wu J, Jiang X, Moschou PN, Sun W, Roubelakis-Angelakis KA (2010) Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J 63:1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142:193–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarei A, Trobacher CP, Cooke AR, Meyers AJ, Hall JC, Shelp BJ (2015) Apple fruit copper amine oxidase isoforms: peroxisomal MdAO1 prefers diamines as substrates whereas extracellular MdAO2 exclusively utilizes monoamines. Plant Cell Physiol 56:137–147

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Ping L, Zhang G, Li X (2009) Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J Plant Physiol 166:1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Zhu MK, Chen GP, Zhou S, Tu Y, Wang Y, Dong TT, Hu ZL (2014) A new tomato NAC(NAM/ATAF1/2/CUC2)transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Anita K. Snyder, M. Sc., for the critical reading and language editing of the manuscript.

Data archiving statement

The transcriptome data have been deposited in NCBI database (with the following link: https://submit.ncbi.nlm.nih.gov/subs/sra/SUB9021282/files). Genomic sequences and information of genes related to polyamine metabolism and fruit ripening were downloaded from the JGI database (https://phytozome.jgi.doe.gov/pz/portal.html).

Funding

This work was supported by the National Key Research and Development Program of China (2018YFD1000300), the Major Science and Technology Project in Henan Province (151100110900), the Science and Technology Creative Team in Henan Province (19IRTSTHN009), and the Innovation and Technology Fund of Henan Agricultural University (KJCX2018A15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancan Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by L.A. Meisel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 170 kb)

ESM 2

(XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zheng, X., Liu, S. et al. Polyamine oxidase (PAO)–mediated polyamine catabolism plays potential roles in peach (Prunus persica L.) fruit development and ripening. Tree Genetics & Genomes 17, 10 (2021). https://doi.org/10.1007/s11295-021-01495-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-021-01495-x

Keywords

Navigation