Skip to main content
Log in

High-density linkage maps for Citrus sunki and Poncirus trifoliata using DArTseq markers

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The construction of a high-resolution genetic map of citrus would be of great value to breeders and to associate genomic regions with characteristics of agronomic interest. Here, we describe a novel high-resolution map of citrus using a population derived from a controlled cross between Citrus sunki (female parent) and Poncirus trifoliata (male parent). The genetic linkage maps were constructed using DArTseq markers and a pseudo-testcross strategy; only markers showing the expected segregation ratio were considered. To investigate synteny, all markers from both linkage maps were aligned with the genome of Citrus sinensis. The C. sunki map has a total of 2778 molecular markers and a size of 2446.6 cM, distributed across ten linkage groups. The map of P. trifoliata was built with 3084 markers distributed in a total of nine linkage groups, with a total size of 2411.6 cM. These maps are the most saturated linkage maps available for C. sunki and P. trifoliata and have high genomic coverage. We also demonstrated that the maps reported here are closely related to the reference genome of C. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers DJ, Langridge P, Gustafson JP (eds) Methods in molecular biology, plant genomics, vol 153. Humana Press, New York, pp 19–39

    Google Scholar 

  • Ardila Silva A (2010) Valor genético estimado e QTL afetando porcentagem de sólidos totais na raça bovina gir. Rev Med Vet [online] 20:27–37 ISSN 0122-9354

    Google Scholar 

  • Boava LP, Cristofani-Yaly M, Mafra VS, Kubo K, Kishi TL, Takita MA, Ribeiro-Alves M, Machado MA (2011) Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitic. BMC Genomics 12:39. https://doi.org/10.1186/1471-2164-12-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boava LP, Sagawa CHD, Cristofani-Yaly M, Machado MA (2015) Incidence of Candidatus Liberibacter asiaticus infected plants among citrandarins as rootstock and scion under field conditions. Phytopathology 105:518–524

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Guy CL, Moore GA (1994) Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of coldacclimation-responsive loci. Theoretical and Applied Genetics 89:606-614.

  • Carvalho MT, Bordignon R, Ballvé RML, Pinto-Maglio CAF, Medina Filho HP (1997) Aspectos biológicos do reduzido número de sementes da tangerina ‘Sunki’. Bragantia, Campinas, SP 56(1):69–77

    Article  Google Scholar 

  • Castle WS, Tucker DPH, Krezdorn AH, Youtsey CO (1993) Rootstocks for Florida citrus: rootstock selection—the first step to success, 2nd edn. University of Florida, Gainesville 92p. 28cm. ISBNO 0-916287-07-6

    Google Scholar 

  • Chen L, Storey JD (2006) Relaxed significance criteria for linkage analysis. Genetics 173:2371–2381. https://doi.org/10.1534/genetics.105.052506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Bowman KD, Choi YA, Dang PM, Rao MN et al (2007) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genomes 4:1–10

    Article  CAS  Google Scholar 

  • Cristofani M, Machado MA, Grattapaglia D (1999) Genetic linkage maps of Citrus sunki Hort. ex. Tan. and Poncirus trifoliata (L.) Raf. and mapping of citrus tristeza virus resistance gene. Euphytica 109:25–32

    Article  CAS  Google Scholar 

  • Curtolo M, Cristofani-Yaly M, Gazaffi R, Takita MA, Figueira A, Machado MA (2017) QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genomics 18:289–305. https://doi.org/10.1186/s12864-017-3629-2

  • Dalkilic Z, Timmer LW, Gmmitter Junior FG (2005) Linkage of an Alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J Am Soc Hortic Sci 130:191–195

    CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Huang S, Ling P, Yu C, Tao Q, Chen C, Wendell MK, Zhang HB, Gmitter Junior FG (2001) Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Mol Genet Genomics 265:739–747.

  • Deng Z, Huang S, Xiao S, Gmitter Junior FG (1997) Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata. Genome 40:697–704.

  • Durham RE, Liou PC, Gmitter Junior FG, Moore GA (1992) Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theoretical and Applied Genetics 84:39-48.

  • Folimonova SY, Robertson CJ, Garnsey SM, Gowda S, Dawson WO (2009) Examination of the responses of different genotypes of citrus to huanglongbing (citrus greening) under different conditions. Phytopathology 99:1346–1354.

  • García MR, Asins MJ, Carbonell EA (2000) QTL analysis of yield and seed number in citrus. Theoretical and Applied Genetics 101:487–493. https://doi.org/10.1007/s001220051507

    Article  Google Scholar 

  • Garcia R, Asins MJ, Forner J, Carbonell EA (1999) Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theor Appl Genet 99: 511–518.

  • Garnsey SM, Barrett HC, Hutchison DJ (1987) Identification of citrus tristeza virus resistance in citrus relatives and its potential applications. Phytophylactica 19:187–191

    Google Scholar 

  • Gazaffi R, Margarido GRA, Pastina MM, Mollinari M, Garcia AAF (2014) A model for quantitative trait loci mapping, linkage phase, and segregation pattern estimation for a full-sib progeny. Tree Genet Genomes SpringerLink 10(4):791–801

    Article  Google Scholar 

  • Gmitter Junior FG, Xiao SY, Huang S, Hu XL, Garnsey SM, Deng Z (1996) A localized linkage map of the citrus tristeza virus resistance gene region. Theoretical and Applied Genetics 6:688–695. https://doi.org/10.1007/bf00226090

    Article  Google Scholar 

  • Gulsen O, Uzun A, Canan I, Seday U, Canihos E (2010) A new citrus linkage map based on SRAP SSR ISSR POGP RGA and RAPD markers. Euphytica 173:265–277. https://doi.org/10.1007/s10681-010-0146-7

    Article  CAS  Google Scholar 

  • Jaccoud D (2001) Diversity arrays, a solid-state technology for sequence information independent genotyping. Nucleic Acids Res 29:25–25. https://doi.org/10.1093/nar/29.4.e25

    Article  Google Scholar 

  • Jansen J, Jong AG, Ooijen JW (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102:1113–1122. https://doi.org/10.1007/s001220000489

    Article  CAS  Google Scholar 

  • Kijas JMH, Thomas MR, Fowler JCA, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of citrus. Theor Appl Genet 94:701–701

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175. https://doi.org/10.1111/j.1469-1809.1943.tb02321.x

    Article  Google Scholar 

  • Luro F, Bové JM, Ollitrault P (1995) DNA amplified fingerprinting a useful tool for determination of genetic origin and diversity analysis in citrus. Hortscience 30:1063–1067

    CAS  Google Scholar 

  • Luro F, Laigret F, Lorieux M, Ollitrault P (1996) Citrus genome mapping with molecular markers: two maps obtained by segregation analysis of progeny of one intergeneric cross. Proc Intl Soc Citricult 2:862–866

    Google Scholar 

  • Machado MA, Coletta Filho HD, Targon MLPN, Pompeu Junior J (2002) Genetic relationship of Mediterranean mandarins (C. deliciosa Tenore) using RAPD markers. Euphytica 92:321–326

    Article  Google Scholar 

  • Margarido GRA, Souza AP, Garcia AAF (2007) OneMap, software for genetic mapping in outcrossing species. Hereditas 144:78–79

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira RP, Cristofani M, Machado MA (2004) Genetic linkage maps of ‘Pera’ sweet orange and ‘Cravo’ mandarin with RAPD markers. Pesq Agrop Brasileira 39:159–165

    Article  Google Scholar 

  • Oliveira AC, Bastianel M, Cristofani-Yaly M, Morais Do Amaral A, Machado MA (2007) Development of genetic maps of the citrus varieties ‘Murcott’ tangor and ‘Pera’ sweet orange by using fluorescent AFLP markers. J Appl Genet 48:219–231

    Article  Google Scholar 

  • Ollitrault et al (2012) A reference genetic map of C. clementina hort. ex Tan.: citrus evolution inferences from comparative mapping. BMC Genomics 13:593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin I (2011) Chasing ghosts: comparative mapping in the Brassicaceae. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 153–170

    Chapter  Google Scholar 

  • Passos OS, Peixouto LS, Costa dos Santos L, Caldas RC, Soares Filho WS (2006) Caracterização de híbridos de Poncirus trifoliata e de outros porta-enxertos de citros no Estado da Bahia. Rev Bras Frutic 28(3):410–413

    Article  Google Scholar 

  • Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8(5):1061–1071

    Article  Google Scholar 

  • Roose ML, Feng D, Cheng FS, Tayyar RI, Federici CT, Kupper RS (2000) Mapping the citrus genome. Acta Hort. (ISHS) 535:25-32. https://doi.org/10.17660/ActaHortic.2000.535.1

  • Ruiz C, Asins MJ (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826. https://doi.org/10.1007/s00122-002-1095-x

  • Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F et al (2011) Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of eucalyptus. BMC Proc 5(Suppl 7):P54. https://doi.org/10.1186/1753-6561-5-S7-P54

    Article  PubMed Central  Google Scholar 

  • Sharma A, Li X, Lim YP (2014) Comparative genomics of Brassicaceae crops. Breed Sci 64(1):3–13. https://doi.org/10.1270/jsbbs.64.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siviero A, Cristofani M, Boava LP, Machado MA (2002) QTL mapping linked to fruit set and seeds in Citrus sunki vs. Poncirus trifoliata hybrids. Rev Bras Frutic 24(3):741–743, ISSN 0100-2945. https://doi.org/10.1590/S0100-29452002000300045

    Article  Google Scholar 

  • Siviero A, Cristofani M, Machado MA (2003) QTL mapping associated with rooting stem cuttings from Citrus sunki vs. Poncirus trifoliata hybrids—ProQuest. Crop Breeding Appl Biotechnol; Vicosa 3(1):83–88

  • Siviero A, Cristofani M, Furtado E, Garcia A, Coelho A, Machado M (2006) Identification of QTLs associated with citrus resistance to Phytophthora gummosis (PDF download available). J Appl Genet 47(1):23–28. https://doi.org/10.1007/BF03194595

    Article  PubMed  Google Scholar 

  • Souza LM, Gazaffi R, Mantello CC, Silva CC, Garcia D, Le Guen V et al (2013) QTL mapping of growth related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate. PLoS One 8(4):e61238. https://doi.org/10.1371/journal.pone.0061238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Ma CX, Painter I, Zeng ZB (2002) Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species. Theor Popul Biol 61:349–363

    Article  PubMed  Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (processes no. 11/18605-0 and 2014/50880-0) and Instituto Nacional de Ciência e Tecnologia (INCT) de Genômica para Melhoramento de Citros (process no. 573848/08-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariângela Cristofani-Yaly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by C. Chen

Electronic supplementary material

ESM 1

(DOCX 136 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtolo, M., Soratto, T.A.T., Gazaffi, R. et al. High-density linkage maps for Citrus sunki and Poncirus trifoliata using DArTseq markers. Tree Genetics & Genomes 14, 5 (2018). https://doi.org/10.1007/s11295-017-1218-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1218-9

Keywords

Navigation