Skip to main content
Log in

Comparative analysis of Pinus pinea and Pinus pinaster dehydrins under drought stress

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Maritime pine (Pinus pinaster) and stone pine (P. pinea) are two of the most drought-resistant Mediterranean trees. Several studies have analysed the response to drought stress at the molecular level in maritime pine, including the identification of drought-induced genes, transcriptomic analysis during dehydration or in-depth characterisation and diversity studies of specific candidate genes. On the contrary, much less information is available for stone pine, and notwithstanding being a closely related species, significant differences in the transcription profile of several genes during drought, evaluated using microarrays, were reported recently for these two species. In this study, we focus on P. pinea dehydrins, one of the most important gene families expressed in response to drought. We have identified eight dehydrin genes in P. pinea, orthologous to the ones previously described in P. pinaster, and have compared their transcription profiles under drought stress. For this purpose, we imposed a severe and prolonged drought treatment to P. pinea seedlings and analysed the expression pattern of proteins from the dehydrin family in needles, stems and roots. The complete open reading frames of these genes were amplified from cDNA and genomic DNA, and their intron/exon structures were determined. qRT-PCR was performed to analyse their expression pattern in needles, stems and roots during the drought treatment. Remarkable differences between the two species have been detected in the transcript patterns of five out of the eight genes, which could be related with the different behaviours described for these species under drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahuja MR, Neale DB (2005) Evolution of genome size in conifers. Silvae Genetica 54:126–137

    Google Scholar 

  • Aranda I, Alia R, Ortega U, Dantas AK, Majada J (2010) Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations. Tree Genet Genomes 6:169–178. doi:10.1007/s11295-009-0238-5

    Article  Google Scholar 

  • Brini F et al (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026. doi:10.1007/s00299-007-0412-x

    Article  CAS  PubMed  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74. doi:10.1046/j.1469-8137.1997.00831.x

    Article  CAS  Google Scholar 

  • Carrasquinho I, Gonçalves E (2013) Genetic variability among Pinus pinea L. provenances for survival and growth traits in Portugal. Tree Genet Genomes 9:855–866. doi:10.1007/s11295-013-0603-2

    Article  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803. doi:10.1111/j.1399-3054.1996.tb00546.x

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296. doi:10.1111/j.1399-3054.1997.tb04785.x

    Article  CAS  Google Scholar 

  • Costa M, Morla C, Sainz H (1997) Los bosques ibéricos. Una interpretación geobotánica. Ed. Planeta. Fourth edn., Barcelona

  • Chambel MR, Climent J, Alia R (2007) Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann For Sci 64:87–97. doi:10.1051/forest.2006092

    Article  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116. doi:10.1007/BF02670468

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell Online 10:623–638. doi:10.1105/tpc.10.4.623

    Article  CAS  Google Scholar 

  • de Miguel M, Sánchez-Gómez D, Cervera MT, Aranda I (2012) Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought. Tree Physiol 32:94–103. doi:10.1093/treephys/tpr122

    Article  PubMed  Google Scholar 

  • dos Santos CS, de Vasconcelos MW (2012) Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with the pine wood nematode. Eur J Plant Pathol 132:407–418. doi:10.1007/s10658-011-9886-z

    Article  CAS  Google Scholar 

  • dos Santos CS, Pinheiro M, Silva AI, Egas C, de Vasconcelos MW (2012) Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening. BMC Genomics 13:599. doi:10.1186/1471-2164-13-599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dubos C et al (2003) Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiol 23:169–179. doi:10.1093/treephys/23.3.169

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Plomion C (2003) Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Mol Biol 51:249–262. doi:10.1023/A:1021168811590

    Article  CAS  PubMed  Google Scholar 

  • Eriksson SK, Harryson P (2011) Dehydrins: molecular biology, structure and function. In: Luttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, vol 215. Ecological studies. Springer, 233 Spring Street, New York, 10013, USA, pp 289–305. doi:10.1007/978-3-642-19106-0_14

    Chapter  Google Scholar 

  • Eveno E et al (2008) Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25:417–437. doi:10.1093/molbev/msm272

    Article  CAS  PubMed  Google Scholar 

  • Fady B (2012) Biogeography of neutral genes and recent evolutionary history of pines in the Mediterranean Basin. Ann For Sci 69:421–428. doi:10.1007/s13595-012-0219-y

    Article  Google Scholar 

  • Fady B, Fineschi S, Vendramin GG (2004) EUFORGEN technical guidelines for genetic conservation and use for Italian stone pine (Pinus pinea). International Plant Genetic Resource Institute, Rome, Italy

    Google Scholar 

  • Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5 doi:10.3389/fpls.2014.00576

  • Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703. doi:10.1093/jxb/eri262

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298. doi:10.1007/s00425-003-0986-7

    CAS  PubMed  Google Scholar 

  • Hu L, Wang Z, Du H, Huang B (2010) Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. J Plant Physiol 167:103–109. doi:10.1016/j.jplph.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  • Hughes S, Graether SP (2011) Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci 20:42–50. doi:10.1002/pro.534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jarvis SB, Taylor MA, MacLeod MR, Davies HV (1996) Cloning and characterisation of the cDNA clones of three genes that are differentially expressed during dormancy-breakage in the seeds of Douglas fir (Pseudotsuga menziesii). J Plant Physiol 147:559–566. doi:10.1016/S0176-1617(96)80046-0

    Article  CAS  Google Scholar 

  • Jiménez-Bremont JF, Maruri-López I, Ochoa-Alfaro AE, Delgado-Sánchez P, Bravo J, Rodríguez-Kessler M (2013) LEA gene introns: is the intron of dehydrin genes a characteristic of the serine-segment? Plant Mol Biol Report 31:128–140. doi:10.1007/s11105-012-0483-x

    Article  Google Scholar 

  • Joosen RVL et al (2006) Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays. Tree Physiol 26:1297–1313. doi:10.1093/treephys/26.10.1297

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371. doi:10.1038/nprot.2009.2

    Article  CAS  PubMed  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316. doi:10.1104/pp. 011171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kontunen-Soppela S, Laine K (2001) Seasonal fluctuation of dehydrins is related to osmotic status in Scots pine needles. Trees 15:425–430. doi:10.1007/s004680100124

    CAS  Google Scholar 

  • Korotaeva N, Romanenko A, Suvorova G, Ivanova MV, Lomovatskaya L, Borovskii G, Voinikov V (2015) Seasonal changes in the content of dehydrins in mesophyll cells of common pine needles. Photosynth Res 124:159–169. doi:10.1007/s11120-015-0112-2

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Prásil IT, Vítámvás P (2010) Role of dehydrins in plant stress response. In: Pessarakli M (ed) Handbook of plant and crop stress, third edition. Books in soils, plants, and the environment. CRC Press, pp 239–285. doi:10.1201/b10329-13

  • Kovacs D, Agoston B, Tompa P (2008a) Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav 3:710–713. doi:10.4161/psb.3.9.6434

    Article  PubMed Central  PubMed  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008b) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390. doi:10.1104/pp. 108.118208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582. doi:10.2135/cropsci2003.5770

    Article  CAS  Google Scholar 

  • Lopez R, Aranda I, Gil L (2009) Osmotic adjustment is a significant mechanism of drought resistance in Pinus pinaster and Pinus canariensis. Investigacion Agraria-Sistemas Y Recursos Forestales 18:159–166. doi:10.5424/fs/2009182-01059

    Google Scholar 

  • Lorenz WW, Alba R, Yu YS, Bordeaux J, Simoes M, Dean J (2011) Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics 12:264. doi:10.1186/1471-2164-12-264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacKay J, Dean J (2011) Transcriptomics. In: Piomion C, Bousquet J, Kole C (eds) Genetics, genomics and breeding of conifers. pp 323–357

  • Mota MM, Vieira PC (2008) Pine wilt disease in Portugal. In: Pine wilt disease. Springer, pp 33–38

  • Mouillon JM, Eriksson SK, Harryson P (2008) Mimicking the plant cell interior under water stress by macromolecular crowding: disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiol 148:1925–1937. doi:10.1104/pp. 108.124099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mutke S, Gordo J, Khouja M, Fady B (2013) Low genetic and high environmental diversity at adaptive traits in Pinus pinea from provenance tests in France and Spain. In: Mutke S, Piqué M, Calama R (eds) Mediterranean stone pine for agroforestry. CIHEAM / FAO /INIA / IRTA / CESEFOR / CTFC, Zaragoza, pp 73–79

    Google Scholar 

  • Neale DB et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59. doi:10.1186/gb-2014-15-3-r59

    Article  PubMed Central  PubMed  Google Scholar 

  • Nystedt B et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature. doi:10.1038/nature12211

    PubMed  Google Scholar 

  • Perdiguero P, Barbero MC, Cervera MT, Collada C, Soto Á (2013) Molecular response to water stress in two contrasting Mediterranean pines (Pinus pinaster and Pinus pinea). Plant Physiol Biochem 28:199–208. doi:10.1016/j.plaphy.2013.03.008

    Article  Google Scholar 

  • Perdiguero P, Barbero MC, Cervera MT, Soto Á, Collada C (2012a) Novel conserved segments are associated with differential expression patterns for Pinaceae dehydrins. Planta 236:1863–1874. doi:10.1007/s00425-012-1737-4

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero P, Collada C, Barbero MC, García Casado G, Cervera MT, Soto Á (2012b) Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization. Plant Physiol Biochem 50:44–53. doi:10.1016/j.plaphy.2011.09.022

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi:10.1093/nar/29.9.e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinzauti F, Sebastiani F, Budde K, Fady B, González-Martínez S, Vendramin G (2012) Nuclear microsatellites for Pinus pinea (Pinaceae), a genetically depauperate tree, and their transferability to P. halepensis. Am J Bot 99:e362–e365. doi:10.3732/ajb.1200064

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753. doi:10.1023/B:PLAN.0000040903.66496.a4

    Article  CAS  PubMed  Google Scholar 

  • Rahman LN et al (2010) Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes—synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol 88:791–807. doi:10.1139/O10-026

    Article  CAS  PubMed  Google Scholar 

  • Richard S, Morency MJ, Drevet C, Jouanin L, Seguin A (2000) Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol Biol 43:1–10. doi:10.1023/A:1006453811911

    Article  CAS  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556. doi:10.2478/s11658-006-0044-0

    Article  CAS  PubMed  Google Scholar 

  • Sáez-Laguna E, Guevara MÁ, Díaz LM, Sánchez-Gómez D, Collada C, Aranda I, Cervera MT (2014) Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS ONE 9:e103145. doi:10.1371/journal.pone.0103145

    Article  PubMed Central  PubMed  Google Scholar 

  • Sánchez-Gómez D, Velasco-Conde T, Cano-Martín FJ, Ángeles Guevara M, Teresa Cervera M, Aranda I (2011) Inter-clonal variation in functional traits in response to drought for a genetically homogeneous Mediterranean conifer. Environ Exp Bot 70:104–109. doi:10.1016/j.envexpbot.2010.08.007

    Article  Google Scholar 

  • Soto A, Robledo-Arnuncio J, González-Martínez S, Smouse P, Alia R (2010) Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Mol Ecol 19:1396–1409. doi:10.1111/j.1365-294X.2010.04571.x

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Lin HH (2010) Role of plant dehydrins in antioxidation mechanisms. Biologia 65:755–759. doi:10.2478/s11756-010-0090-y

    Article  CAS  Google Scholar 

  • Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308. doi:10.1111/j.1365-3040.2004.01237.x

    Article  CAS  Google Scholar 

  • Vendramin GG et al (2008) Genetically depauperate but widespread: the case of an emblematic Mediterranean pine. Evolution 62:680–688. doi:10.1111/j.1558-5646.2007.00294.x

    Article  PubMed  Google Scholar 

  • Yakovlev I, Asante D, Fossdal C, Partanen J, Junttila O, Johnsen Ø (2008) Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228:459–472. doi:10.1007/s00425-008-0750-0

    Article  CAS  PubMed  Google Scholar 

  • Zuccarini P, Ciurli A, Alpi A, Hegedüšová K (2011) Hydraulic and chemical mechanisms in the response of Pinus pinaster Ait. to conditions of water stress. Ekológia (Slovak Republic)

Download references

Acknowledgments

The authors would like to thank Dr. Martin Venturas, as well as the two anonymous reviewers and the editor for their helpful suggestions on the manuscript. This work has been funded through the projects AGL2006-03242/FOR (Spanish Ministry of Education and Science), CCG07-UPM/AMB-1932 and CCG10-UPM/AMB-5038 (Madrid Regional Government-UPM).

Compliance with ethical standards

I state that this work is all original research carried out by the authors. All authors agree with the contents of the manuscript and its submission to the journal. No part of the research has been published in any form elsewhere. The manuscript is not being considered for publication elsewhere whilst it is being considered for publication in this journal. Any research in the paper not carried out by the authors is fully acknowledged in the manuscript. All sources of funding are acknowledged in the manuscript. The authors declare that they have no competing interests.

Data archiving

The sequences of P. pinea dehydrin genes obtained in this study were submitted to GenBank with the following accessions numbers: KM033825–KM033832 for genomic DNA and KM033836–KM033838, KM033840–KM033842 for mRNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Perdiguero.

Additional information

Communicated by S. C. González-Martínez

This article is part of the Topical Collection on Genome Biology

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 32 kb)

ESM 2

(PDF 288 kb)

ESM 3

(PDF 36 kb)

ESM 4

(PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perdiguero, P., Soto, Á. & Collada, C. Comparative analysis of Pinus pinea and Pinus pinaster dehydrins under drought stress. Tree Genetics & Genomes 11, 70 (2015). https://doi.org/10.1007/s11295-015-0899-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0899-1

Keywords

Navigation