Skip to main content
Log in

Performance of microsatellites for parentage assignment following mass controlled pollination in a clonal seed orchard of loblolly pine (Pinus taeda L.)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Mass controlled pollination (MCP), involving large-scale application of pollen on physically isolated female reproductive organs, has been a lower cost alternative to controlled pollination for the commercial production of genetically improved seeds. Nevertheless, rare are the studies that examined the efficacy of operational MCP and no such assessment has been done in loblolly pine to date. The success of MCP was assessed by a microsatellite-based investigation of the realized versus expected parentage of a set of 300 Pinus taeda offspring in 19 families generated in two subsequent rounds of MCP in 2005 and 2006 in a clonal seed orchard in Brazil. Multi-locus combined probability of parentage exclusion both theoretical and realized from actual testing was >99 % for single parent and parent pair testing when using nine or ten markers. Parentage assignments carried out under a maximum likelihood framework revealed a significantly higher success rate of MCP in 2006 (84 %) following technical improvements adopted to minimize pollen contamination and maximize male reproductive success, although significant variability in the correct maternity and full parentage was seen among individual families. The observed patterns of unexpected parentage indicated that this variability likely resulted from mislabeling of clonal ramets of the parents used in the crosses which impacted both maternity and paternity. Preventing pollen contamination will not be sufficient for successful MCP if inaccuracies exist in the identity of the clonal plants that ultimately provide pollen and female strobili, showing that DNA marker auditing and correction of identity of all ramets in a clonal seed orchard should be a standard practice in the operational implementation of MCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ABRAF (2013) ABRAF Statistical Annual Report 2013 Base year 2012. In: http://www.abraflor.org.br/estatisticas/ABRAF13/ABRAF13_EN.pdf (ed). Brazilian Association of Forest Plantation Producers, Brasília

  • Adams WT, Neale DB, Loopstra CA (1988) Verifying controlled crosses in conifer tree-improvement programs. Silvae Genet 37:147–152

    Google Scholar 

  • Al-Rabab’ah MA, Williams CG (2002) Population dynamics of Pinus taeda L. based on nuclear microsatellites. For Ecol Manag 163:263–271

    Article  Google Scholar 

  • Al-Rabah’ah MA, Williams CG (2004) An ancient bottleneck in the lost pines of central Texas. Mol Ecol 13:1075–1084

    Article  Google Scholar 

  • Blush TD, Bramlett DL, El-Kassaby YA (1993) Reproductive phenology of seed orchards. In: Bramlett DL, Askew GR, Blush TD, Bridgwater FE, Jett JB (eds) Advances in pollen management USDA handbook 698. USDA Forest Service, Washington, pp 15–23

    Google Scholar 

  • Bramlett DL (1997) Genetic gain from mass controlled pollination and topworking. J For 95:15–19

    Google Scholar 

  • Bridgwater FE, Blush TD, Wheeler NC (1993) Supplemental mass pollination. In: Bramlett DL, Askew GR, Blush TD, Bridgwater FE, Jett JB (eds) Advances in pollen management USDA for Serv. Agric. Handbook, vol 698., pp 69–77

    Google Scholar 

  • Bridgwater FE, Bramlett DL, Byram TD, Lowe WJ (1998) Controlled mass pollination in loblolly pine to increase genetic gains. For Chron 74:185–189

    Article  Google Scholar 

  • Brondani RPV, Grattapaglia D (2001) Cost-effective method to synthesize a fluorescent internal DNA standard for automated fragment sizing. Biotechniques 31:793–795, 798, 800

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by tag DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1006, 1008−1010

  • Daniels JD (1978) Efficacy of supplemental mass-pollination in a Douglas-Fir seed orchard. Silvae Genet 27:52–58

    Google Scholar 

  • DeWoody J, Nason JD, Hipkins VD (2006) Mitigating scoring errors in microsatellite data from wild populations. Mol Ecol Notes 6:951–957

    Article  CAS  Google Scholar 

  • Doerksen TK, Herbinger CM (2010) Impact of reconstructed pedigrees on progeny-test breeding values in red spruce. Tree Genet Genomes 6:591–600

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Echt CS, MayMarquardt P (1997) Survey of microsatellite DNA in pine. Genome 40:9–17

    Article  PubMed  CAS  Google Scholar 

  • Echt CS, Saha S, Deemer DL, Nelson CD (2011a) Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine. Tree Genet Genomes 7:773–780

    Article  Google Scholar 

  • Echt CS, Saha S, Krutovsky KV, Wimalanathan K, Erpelding JE, Liang C, Nelson CD (2011b) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genetics 12:17, doi:10.1186/1471-2156-12-17

  • El-Kassaby YA, Lstiburek M (2009) Breeding without breeding. Genet Res 91:111–120

    Article  Google Scholar 

  • El-Kassaby YA, Reynolds S (1990) Reproductive phenology, parental balance, and supplemental mass pollination in a Sitka-spruce seed-orchard. For Ecol Manag 31:45–54

    Article  Google Scholar 

  • El-Kassaby YA, Ritland K (1986) The relation of outcrossing and contamination to reproductive phenology and supplemental mass pollination in a Douglas-Fir seed orchard. Silvae Genet 35:240–244

    Google Scholar 

  • El-Kassaby YA, Barnes S, Cook C, Macleod DA (1993a) Supplemental mass pollination success rate in a mature Douglas-Fir seed orchard. Can J For Res-Rev Can De Recherche Forestiere 23:1096–1099

    Article  Google Scholar 

  • El-Kassaby YA, Meagher MD, Davidson R (1993b) Temporal variation in the outcrossing rate in a natural stand of western white-pine. Silvae Genet 42:131–135

    Google Scholar 

  • El-Kassaby YA, Funda T, Lai BSK (2010) Female reproductive success variation in a Pseudotsuga menziesii seed orchard as revealed by pedigree reconstruction from a bulk seed collection. J Hered 101:164–168

    Article  PubMed  Google Scholar 

  • El-Kassaby YA, Cappa EP, Liewlaksaneeyanawin C, Klapste J, Lstiburek M (2011) Breeding without breeding: is a complete pedigree necessary for efficient breeding? Plos One 6(10):e25737

  • Elsik CG, Williams CG (2001) Low-copy microsatellite recovery from a conifer genome. Theor Appl Genet 103:1189–1195

    Article  CAS  Google Scholar 

  • Elsik CG, Minihan VT, Hall SE, Scarpa AM, Williams CG (2000) Low-copy microsatellite markers for Pinus taeda L. Genome 43:550–555

    Article  PubMed  CAS  Google Scholar 

  • Eriksson U, Jansson G, Yazdani R, Wilhelmsson L (1995) Effects of supplemental mass pollination (SMP) in a young and a mature seed orchard of Pinus sylvestris. Tree Physiol 15:519–526

    Article  PubMed  Google Scholar 

  • Faria DA, Mamani EMC, Pappas GJ, Grattapaglia D (2011) Genotyping systems for eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genet Genomes 7:63–77

    Article  Google Scholar 

  • Fernandes L, Rocheta M, Cordeiro J, Pereira S, Gerber S, Oliveira MM, Ribeiro MM (2008) Genetic variation, mating patterns and gene flow in a Pinus pinaster Aiton clonal seed orchard. Ann For Sci. doi:10.1051/forest:2008049

  • Gaspar MJ, De-Lucas A, Alia R, Paiva JAP, Hidalgo E, Louzada J, Almeida H, Gonzalez-Martinez SC (2009) Use of molecular markers for estimating breeding parameters: a case study in a Pinus pinaster Ait. progeny trial. Tree Genet Genomes 5:609–616

    Article  Google Scholar 

  • Joly RJ, Adams WT (1983) Allozyme analysis of pitch X loblolly-pine hybrids produced by supplemental mass-pollination. For Sci 29:423–432

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kumar S, Gerber S, Richardson TE, Gea L (2007) Testing for unequal paternal contributions using nuclear and chloroplast SSR markers in polycross families of radiata pine. Tree Genet Genomes 3:207–214

    Article  Google Scholar 

  • Lai BS, Funda T, Liewlaksaneeyanawin C, Klapste J, Van Niejenhuis A, Cook C, Stoehr MU, Woods J, El-Kassaby YA (2010) Pollination dynamics in a Douglas-Fir seed orchard as revealed by pedigree reconstruction. Annals of Forest Science 67(8):808

  • Lambeth C, Lee BC, O’Malley D, Wheeler N (2001) Polymix breeding with parental analysis of progeny: an alternative to full-sib breeding and testing. Theor Appl Genet 103:930–943

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi Y, Taira H, Tani N, Tsumura Y (2004) Variation of paternal contribution in a seed orchard of Cryptomeria japonica determined using microsatellite markers. Can J For Res-Rev Can De Recherche Forestiere 34:1683–1690

    Article  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  PubMed  CAS  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martinez-Garcia PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu LS, Gilbert D, Marcais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JF, Lorenz WW, Whetten RW, Sederoff R, Wheeler N, McGuire PE, Main D, Loopstra CA, Mockaitis K, Dejong PJ, Yorke JA, Salzberg SL, Langley CH (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59

    Article  PubMed  PubMed Central  Google Scholar 

  • Nel A, van Staden J (2003) Micro-fibre pollination bags and high viability Pinus patula pollen enhance cone survival and seed set during controlled pollination. S Afr J Bot 69:469–475

    Google Scholar 

  • Plomion C, LeProvost G, Pot D, Vendramin G, Gerber S, Decroocq S, Brach J, Raffin A, Pastuszka P (2001) Pollen contamination in a maritime pine polycross seed orchard and certification of improved seeds using chloroplast microsatellites. Can J For Res-Rev Can De Recherche Forestiere 31:1816–1825

    Article  Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859

    Article  PubMed  CAS  Google Scholar 

  • Shimizu JY (2005) Cultivo do Pinus. Embrapa Florestas Sistemas de Produção-5-ISSN 1678–8281, Curitiba

  • Slavov GT, Howe GT, Adams WT (2005a) Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Can J For Res-Rev Can De Recherche Forestiere 35:1592–1603

    Article  CAS  Google Scholar 

  • Slavov GT, Howe GT, Gyaourova AV, Birkes DS, Adams WT (2005b) Estimating pollen flow using SSR markers and paternity exclusion: accounting for mistyping. Mol Ecol 14:3109–3121

    Article  PubMed  CAS  Google Scholar 

  • Stewart JF, Liu YY, Tauer CG, Nelson CD (2010) Microsatellite versus AFLP analyses of pre-management introgression levels in loblolly pine (Pinus taeda L.) and shortleaf pine (P. echinata Mill.). Tree Genet Genomes 6:853–862

    Article  Google Scholar 

  • Stoehr MU, Orvar BL, Vo TM, Gawley JR, Webber JE, Newton CH (1998) Application of a chloroplast DNA marker in seed orchard management evaluations of Douglas-fir. Can J For Res-Rev Can De Recherche Forestiere 28:187–195

    Article  CAS  Google Scholar 

  • Stoehr M, Mehl H, Nicholson G, Pieper G, Newton C (2006) Evaluating supplemental mass pollination efficacy in a lodgepole pine orchard in British Columbia using chloroplast DNA markers. New For 31:83–90

    Article  Google Scholar 

  • Summers K, Amos W (1997) Behavioral, ecological, and molecular genetic analyses of reproductive strategies in the Amazonian dart-poison frog, Dendrobates ventrimaculatus. Behav Ecol 8:260–267

    Article  Google Scholar 

  • Torimaru T, Wang XR, Fries A, Andersson B, Lindgren D (2009) Evaluation of pollen contamination in an advanced Scots pine seed orchard. Silvae Genet 58:262–269

    Google Scholar 

  • Vandeputte M, Mauger S, Dupont-Nivet M (2006) An evaluation of allowing for mismatches as a way to manage genotyping errors in parentage assignment by exclusion. Mol Ecol Notes 6:265–267

    Article  Google Scholar 

  • Wang JL (2010) Effects of genotyping errors on parentage exclusion analysis. Mol Ecol 19:5061–5078

    Article  PubMed  Google Scholar 

  • Wang XR, Torimaru T, Lindgren D, Fries A (2010) Marker-based parentage analysis facilitates low input ‘breeding without breeding’ strategies for forest trees. Tree Genet Genomes 6:227–235

    Article  Google Scholar 

  • Webber JE (1995) Pollen management for intensive seed orchard production. Tree Physiol 15:507–514

    Article  PubMed  Google Scholar 

  • Williams CG, Elsik CG, Barnes RD (2000) Microsatellite analysis of Pinus taeda L. in Zimbabwe. Heredity 84:261–268

    Article  PubMed  CAS  Google Scholar 

  • Yamamura K, Hino A (2007) Estimation of the proportion of defective units by using group testing under the existence of a threshold of detection. Commun Stat-Simul Comput 36:949–957

    Article  Google Scholar 

  • Yazdani R, Hadders G, Szmidt AE (1986) Supplemental mass pollination in a seed orchard of Pinus sylvestris L. investigated by isozyme analyses. Scand J For Res 1:309–315

    Article  Google Scholar 

  • Zhou Y, Bui T, Auckland LD, Williams CG (2002) Undermethylated DNA as a source of microsatellites from a conifer genome. Genome 45:91–99

    Article  PubMed  CAS  Google Scholar 

  • Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marcais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (2014) Sequencing and assembly of the 22-gb loblolly pine genome. Genetics 196:875–890

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by CNPq grant 483223/2012-3 and PRONEX FAP-DF/CNPq Grant “NEXTREE” 193.000.570/2009, and Klabin S.A. DG had a CNPq research productivity fellowship and PSAD a partial scholarship support towards her MSc. program from Hereditas Tecnologia em Análise de DNA Ltda.

Data archiving statement

Microsatellite markers used for the parentage analyses are supplied as Supplementary Table S1. Raw microsatellite genotype data generated in the study are supplied as Supplementary Tables S2 and S3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Grattapaglia.

Additional information

Communicated by J. Beaulieu

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 13 kb)

Table S2

(XLSX 21 kb)

Table S3

(XLSX 21 kb)

Table S4

(DOCX 32 kb)

Table S5

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grattapaglia, D., do Amaral Diener, P.S. & dos Santos, G.A. Performance of microsatellites for parentage assignment following mass controlled pollination in a clonal seed orchard of loblolly pine (Pinus taeda L.). Tree Genetics & Genomes 10, 1631–1643 (2014). https://doi.org/10.1007/s11295-014-0784-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0784-3

Keywords

Navigation