Skip to main content
Log in

Identification of marker-trait associations for self-compatibility in a segregating mapping population of Theobroma cacao L.

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Increasing yield, quality, and disease resistance are important objectives for cacao breeding programs. Yield reduction in material improved for other traits is one of the main constraints caused by self-incompatibility (SI). Genes regulating SI in cacao have not been identified; therefore, knowledge of the location of genetic markers for and the effects of alleles determining SI will be useful for selecting uniformly self-compatible cultivars with higher yields. In a mapping population originating from a cross between a self-incompatible clone, Pound-7, and a self-compatible clone, UF-273, we observed important differences in flower retention at 15, 21, and 28 days after pollination. Our results suggest that the best time to measure flower retention is 15 days after pollination or later and that selecting self-compatibility (SC) thresholds is genotype specific. Using marker-trait association analysis we identified one marker, mTcCIR222, strongly associated with SC, as well as three surrounding markers (mTcCIR168, mTcCIR115 and mTcCIR158), all located near the proximal end of linkage group 4. These markers are currently being tested in our marker-assisted selection program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adu-Ampomah Y, Novak FJ, Klu GYP, Lamptey TVO (1991) Use of irradiated pollen as mentor pollen to induce self-fertilization of two self-incompatible Upper Amazon cacao clones. Euphytica 51:219–225

    Article  Google Scholar 

  • Alverson WS, Whitlock BA, Nyffeler R, Bayer C, Baum DA (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486

    Article  PubMed  CAS  Google Scholar 

  • Aneja M, Gianfagna T, Ng E, Badilla I (1994) Carbon dioxide treatment partially overcomes self-incompatibility in a cacao genotype. Hortscience 29:15–17

    Google Scholar 

  • Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JSS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Berard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D'Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2011) The genome of Theobroma cacao. Nat Genet 43:101–108

    Article  PubMed  CAS  Google Scholar 

  • Baker RP, Hasenstein KH, Zavada MS (1997) Hormonal changes after compatible and incompatible pollination in Theobroma cacao L. Hortscience 32:1231–1234

    CAS  Google Scholar 

  • Bartley BGD (1969) Selfing of self-incompatible trees. Annual Report on Cacao Research (1968) Trinidad, pp 22–23

  • Bartley BGD (2005) The genetic diversity of cacao and its utilization. CABI Publishing, Wallingford, p 341

    Book  Google Scholar 

  • Bartley BGD, Cope FW (1973) Practical aspects of self-incompatibility in Theobroma cacao L. In: Moav R (ed) Agricultural genetics—selected topics. Wiley, New York, pp 109–134

    Google Scholar 

  • Bouharmont J (1960) Recherches cytologiques sur la fructification et l'incompatibilité chez Theobroma cacao L. Publication de l'Institut National pour l'Etude Agronomique du Congo. Série scientifique no 89

  • Brown JS, Phillips-Mora W, Power EJ, Krol C, Cervantes-Martinez C, Motamayor JC, Schnell RJ (2007) Mapping QTLs for resistance to frosty pod and black pod diseases and horticultural traits in Theobroma cacao L. Crop Sci 47:1851–1858

    Article  Google Scholar 

  • Brown J, Sautter R, Olano C, Borrone J, Kuhn D, Motamayor J, Schnell R (2008) A composite linkage Map from three crosses between commercial clones of cacao, Theobroma cacao L. Trop Plant Biol 1:120–130

    Article  Google Scholar 

  • Cheesman EE (1927) Fertilization and embryogeny in Theobroma cacao L. Ann Bot 41:107–126

    Google Scholar 

  • Cope FW (1939) Studies in the mechanism of self-incompatibility in cacao I. 8th Annual Report on Cacao Research (1938), Trinidad, pp 20–21

  • Cope FW (1940) Studies in the mechanism of self-incompatibility in cacao II. 9th Annual Report on Cacao Research (1939) Trinidad, pp 19–23

  • Cope FW (1958) Incompatibility in Theobroma cacao. Nature 181:279–279

    Article  Google Scholar 

  • Cope FW (1962) The mechanism of pollen incompatibility in Theobroma cacao L. Heredity 17:157–182

    Article  Google Scholar 

  • Crouzillat D, Lerceteau E, Petiard V, Morera J, Rodriguez H, Walker D, Phillips W, Ronning C, Schnell R, Osei J, Fritz P (1996) Theobroma cacao L.: a genetic linkage map and quantitative trait loci analysis. Theor Appl Genet 93:205–214

    Article  CAS  Google Scholar 

  • Crouzillat D, Ménard B, Mora A, Phillips W, Pétiard V (2000) Quantitative trait analysis in Theobroma cacao using molecular markers. Euphytica 114:13–23

    Article  CAS  Google Scholar 

  • Dantas LG, Guerra M (2010) Chromatin differentiation between Theobroma cacao L. and T. grandiflorum Schum. Genet Mol Biol 33:94–98

    Article  PubMed  Google Scholar 

  • de Nettancourt D (1997) Incompatibility in angiosperms. Sex Plant Reprod 10:185–199

    Article  Google Scholar 

  • Falque M, Vincent A, Vaissiere B, Eskes A (1995) Effect of pollination intensity on fruit and seed set in cacao (Theobroma cacao L.). Sex Plant Reprod 8:354–360

    Article  Google Scholar 

  • Fritz PJ, Phillips-Mora W, Rodriguez H (1995) New tools for 21st century plant breeding. DNA markers: theory and applications. Technical Series Technical Bulletin/CATIE No 251:122 p

  • Glendinning DR (1960) Selfing of self-incompatible cocoa. Nature 187:170–170

    Article  Google Scholar 

  • Hunter J (1990) The status of cacao (Theobroma cacao, Sterculiaceae) in the western hemisphere. Econ Bot 44:425–439

    Article  Google Scholar 

  • Knight R, Rogers HH (1953) Sterility in Theobroma cacao L. Nature 172:164–164

    Article  PubMed  CAS  Google Scholar 

  • Knight R, Rogers HH (1955) Incompatibility in Theobroma cacao. Heredity 9:69–77

    Article  Google Scholar 

  • Lanaud C, Sounigo O, Amefia YK, Paulin D, Lachenaud P, Clément D (1987) Nouvelles données sur le fonctionnement du système d’incompatibilité du cacaoyer et ses conséquences pour la sélection. Café, Cacao, Thé 31:267–277

    Google Scholar 

  • Lanaud C, Fouet O, Clément D, Boccara M, Risterucci A, Surujdeo-Maharaj S, Legavre T, Argout X (2009) A meta–QTL analysis of disease resistance traits of Theobroma cacao L. Mol Breed 24:361–374

    Article  Google Scholar 

  • Lopes UV, Yamada MM (2000) Sexual incompatibility in cacao (Theobroma cacao L.). I. Sample size and approaches to characterize germplasm. In: 13th International Cocoa Research Conference, Kota Kinabalu, Malaysia

  • Marshall J (1933) Fertility in cacao. 3rd Annual Report on Cacao Research (Trinidad), p 34

  • McClure B, Franklin-Tong V (2006) Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 224:233–245

    Article  PubMed  CAS  Google Scholar 

  • McKelvie AD (1956) Cherelle wilt of cacao: I. Pod development and its relation to wilt. J Exp Bot 7:252–263

    Article  Google Scholar 

  • Motamayor JC, Risterucci AM, Lopez PA, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386

    Article  PubMed  CAS  Google Scholar 

  • Motamayor JC, Lachenaud P, da Silva e Mota JW, Loor R, Kuhn DN, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L.). PLoS ONE 3:e3311

    Article  PubMed  Google Scholar 

  • Opeke LK, Jacob VJ (1967) Studies on methods of overcoming self-incompatibility in Theobroma cacao Linn. 2e Conférence Internationale sur les Recherches Cacaoyères, pp 356–359

  • Posnette AF (1940) Self-incompatibility in cocoa (Theobroma spp.). Trop Agric 17:67–71

    Google Scholar 

  • Posnette AF (1945) Incompatibility in Amazon cacao. Trop Agric 22:184–187

    Google Scholar 

  • Pound FJ (1932) Studies on fruitfulness in cacao, I and II. First Annual Report on Cacao Research,1931, Trinidad, pp 24–28

  • Pound FJ (1933) Studies on fruitfulness in cacao III. Second Annual Report on Cacao Research (1932), Trinidad

  • Pugh T, Fouet O, Risterucci AM, Brottier P, Abouladze M, Deletrez C, Courtois B, Clement D, Larmande P, N’Goran JAK, Lanaud C (2004) A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers. Theor Appl Genet 108:1151–1161

    Article  PubMed  CAS  Google Scholar 

  • Sage TL, Bertin RI, Williams EG (1994) Ovarian and other late-acting self-incompatibility systems. In: Williams EG, Clarke AE, Knox RB (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer, Norwell

    Google Scholar 

  • Schnell RJ, Kuhn DN, Brown JS, Olano CT, Phillips-Mora W, Amores FM, Motamayor JC (2007) Development of a marker assisted selection program for cacao. Phytopathology 97:1664–1669

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. Annu Rev Plant Biol 56:467–489

    Article  PubMed  CAS  Google Scholar 

  • van Ooijen JW (2004) MapQTL®5. Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V, Wageningen

    Google Scholar 

  • Voelcker OJ (1936) Self-incompatibility in cacao. 6th Annual Report on Cacao Research (Trinidad), pp 2–5

  • Voelcker OJ (1937) Self-compatibility in cacao II. 7th Annual Report on Cacao Research (Trinidad), pp 2–5

  • Warren J, Misir S, Kalai (1995) Isozyme markers for self-compatibility and yield in Theobroma cacao (cacao). Heredity 74:354–356

    Article  CAS  Google Scholar 

  • Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Harper A, Franklin FCH, Franklin-Tong VE (2009) Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459:992–995

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Tony Alfaro and Allan Mata Quiros at CATIE. Thanks are due to Cecile Tondo and Belinda Martineau for helpful comments on the manuscript. We also would like to thank Mars, Inc. and their funding of Trust Agreement # 58-6631-6-123 that in part supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Motamayor.

Additional information

Communicated by D. Grattapaglia

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royaert, S., Phillips-Mora, W., Arciniegas Leal, A.M. et al. Identification of marker-trait associations for self-compatibility in a segregating mapping population of Theobroma cacao L.. Tree Genetics & Genomes 7, 1159–1168 (2011). https://doi.org/10.1007/s11295-011-0403-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0403-5

Keywords

Navigation