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Abstract  

Through the Internet of Things (IoT) the internet scope is established by the integration of physical 

things to classify themselves into mutual things. A physical thing can be created by this inventive 

perception to signify itself in the digital world. Regarding the physical things that are related to the 

internet, it is worth noting that considering numerous theories and upcoming predictions, they 

mostly require protected structures, moreover, they are at risk of several attacks. IoTs are endowed 

with particular routing disobedience called sinkhole attack owing to their distributed features. In 

these attacks, a malicious node broadcasts illusive information regarding the routings to impose 

itself as a route towards specific nodes for the neighboring nodes and thus, attract data traffic. RPL 

(IP-V6 routing protocol for efficient and low-energy networks) is a standard routing protocol which 

is mainly employed in sensor networks and IoT. This protocol is called SoS-RPL consisting of two 

key sections of the sinkhole detection. In the first section rating and ranking the nodes in the RPL is 

carried out based on distance measurements. The second section is in charge of discovering the 

misbehavior sources within the IoT network through, the Average Packet Transmission RREQ 

(APT-RREQ). Here, the technique is assessed through wide simulations performed within the NS-3 

environment. Based on the results of the simulation, it is indicated that the IoT network behavior 

metrics are enhanced based on the detection rate, false-negative rate, false-positive rate, packet 

delivery rate, maximum throughput, and packet loss rate. 
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1 Introduction 

There is a rising effort for connecting large physical objects in short distances on the internet 

utilizing the IPV6 protocols to create the internet of things. Standardizing the routing protocols of 

lossy and low power networks (RPL) has recently made an IoT routing protocol. RPL was originally 

intended to be used in lossy and low power (LLN) networks. Within RPL, a Destination Oriented 

Directed Acyclic Graph (DODAG) is created among the nodes in 6LoWPAN which supports one-

way traffic to the destination, two-way traffic between devices, and two-way traffic between the 

devices and the destination. Also, IPV6 is called on over Low-Power Wireless Personal Area 

Networks 6LoWPAN, which is a wireless sensor network using the compressed IPV6 protocol for 

networking and IEEE 802.15.4 as the physical layer and data link protocol. Dissimilar to normal 

independent WSN networks, the devices confined in IoT are available everywhere. Therefore, they 

encounter attacks from both the internet and inside the network [1-2]. 

     A physical object is able to potentially connect to the IoT utilizing IPV6. For IoT, multiple 

applications exist. The scope of the applications includes home security management and home 

automation, environmental monitoring, smart energy management, and monitoring, industrial 

automation, transportation tracking, security and military, smart cities, and medical supervision. In 

the real world, implementation of IoT requires secure connections as a significant challenge due to 

the heterogeneousness of IoT tools: some resources are limited while others can connect to powerful 

IP hosts. Also, the connections between devices in the IoT essentially need to be secure end to end 

(E2E) connections. This means to emphasize the integrity and confidentiality of the messages from 

the source to the destination. Because there are several attacks, like the sinkhole attack, providing 

IoT security is very important. 

     In this paper, the main objective is to design a defense mechanism against sinkhole attacks 

between IoT devices which operates using node rating and ranking. In this scenario, we tried to 

realistically provide IoT tools arranged in an enterprise scenery affected by real-world sinkhole, and 

executing genuine attacks. For replicating a characteristic structural data flow, we gathered the 

traffic data from IoT tools connected through Wi-Fi to various access points, the wire connected to a 

central switch and connected to a router as well. To sniff the network traffic, we carried out port 

mirroring on the switch to record the data utilizing Wireshark. We evaluated our discovery technique 

as realistically as possible and deployed all elements of two botnets (Fig. 1) in our isolated lab to use 

them for infecting 9 commercial IoT tools. 

 

Fig. 1 Lab setup for detecting IoT sinkhole attacks. 



    The rest of this study is adjusted as: Section 2 explains related work. Section 3 explains security 

attacks of IoT network. In Section 4, we explain the proposed method the SoS-RPL schema. Section 5 

includes evaluations of simulation experiment results. Ultimately, we provide the conclusion in 

Section 6. 

 

 

2 Related works 
Different security measurements were established and utilized in various studies for stating the 

sinkhole attack and protecting IoTs from this attack. It is not a new subject, and widespread studies 

exist in this regard. Different studies have proposed various techniques to state these attacks. 
 

    To protect IoT sensors versus a huge amount of cyber-attacks, a methodology has been developed 

by Pacheco et al. [3]. At first, they presented the IoT security structure to SIs that involves 4 layers 

including devices (end nodes), network, services, and application. At that point, their methodology 

was exhibited in order to develop a general threat model for distinguishing the weaknesses in each 

layer and the potential countermeasures which can be spread out to diminish their taking advantage. It 

is worthy to note that authors indicated how it is possible an anomaly behavior analysis invasion 

detection system (ABA-IDS) established upon the discrete wavelet transform (DWT) develops to 

discover abnormalities that could be activated by means of attacks in contrast to the sensors in the first 

layer of our IoT structure. 
 

   A spectrum of challenges, attitudes, and practice in IoT security has been taken into account in [4]. 

IoT security is exclusive in several ways. Moreover, it lets us know about numerous experiments 

which are dissimilar from those in security guarantee of other computing devices like desktops, 

laptops, servers, or even mobile devices. They specially develop two classifications of security attacks 

with respect to the IoT system. The first one presents attacks on the four-layer structural design of IoT 

including perception, network, middleware, and application layer. On the foundation of that, they 

analytically investigated the security dangers and privacy concerns on every single layer of IoT. 

Because of occurring the attacks in each layer of IoT, the authors had to provide a security barrier for 

the whole IoT structure, not only for a particular technology. The second one of the IoT security and 

susceptibilities is dependent upon various application scenarios. The second classification creates a 

systematic basis to protect different IoT applications. 
 

    As a new public significant cryptography, Lattice-Based cryptography has been developed in [5] to 

substitute the public one. In order to execute lattice-based cryptography, the Ring-LWE scheme has 

been recommended. There should be an optimization for applying the scheme to the IoT devices via 8-

bit, 32-bit, or 64-bit microcontrollers. It should be noted that the 8-bit environment is very significant 

for small IoT devices. Nevertheless, side-channel attacks can be damaged the Ring-LWE performance. 

In this research, using 8-bit microcontrollers, we analyze the attack scenarios and offer a 

countermeasure by bit examination for the IoT applications. 
 

     To validate and interconnect the main generation between the IoT devices, a lightweight physical-

layer established security plan is recommended in [6]. They have scientifically examined and 

evaluated the developed method by considering the practicability of real executions. Additionally, they 

have comprehensively suggested a physical-layer main generation and identification scheme 

established upon frequency hopping communications as the RSSs of distinctive frequencies create its 

parameter sets. 
 



    The history, background, and statistics of IoT, also, security-based analysis of IoT architecture have 

been thoroughly discussed in [7]. Besides, they have provided two types of classifications including 

security challenges in the IoT environment and different protection mechanisms. They have also 

concluded that investigation on numerous research challenges, which exist in the literature yet, can 

provide a superior realization about the problem, present elucidation space, and upcoming research 

guidelines to protect the IoT versus the different attacks. 
 

    On the basis of elliptic curve cryptography (ECC), Alamr et al. [8] have recommended a new radio-

frequency identification verification procedure in order to get rid of lots of weaknesses. As well, they 

have utilized elliptic curve Diffie–Hellman (ECDH) vital agreement procedure to generate a 

provisional shared key which is served to encrypt the future conveyed messages. Their procedure 

attains a set of security properties such as reciprocal confirmation, unrecognizability, secrecy, forward 

security, location privacy, and the withstanding against man-in-the-middle, replay and impersonation 

attacks. 
 

    The aforementioned IoT problems in the network security have been introduced and the requirement 

of invasion detection indicated in [9]. A number of categories of invasion uncovering technologies 

have been talked about and their application on IoT architecture has been studied. They have 

compared the application of various technologies and made a viewpoint of the following phase of 

research. The study of network invasion technology can be a crucial topic through data mining and 

machine learning approaches. More than one class feature or detection model is required to increase 

the exposure rate of network invasion uncovering. 
 

    The IoT security problem has been addressed in [10]. They want to obstruct the attacks at the 

network level rather than device one using SDN. Their goal was to defend the IoT devices from 

malevolent attacks and diminished the created damage. The attack is almost certainly begun by the IoT 

device itself or the device is the target. A framework and soft things for the IoT security established 

upon the SDN methods, which assists in quick recognition of unusual behavior and heightened 

flexibility, have been presented in [10]. They have executed the concept proof on Mininet emulator in 

order to distinguish irregular traffic of IoT with a Support Vector Machine (SVM), machine learning 

algorithm, and succeeding alleviation of the attacks. Moreover, they have taken into account lots of 

attacks such as TCP and ICMP flooding, DDoS, and scenarios alongside the IoT device as both target 

and source of attacks. We compare the linear and nonlinear SVM performance in the aforementioned 

scenarios for the detection of these attacks. 
 

   Rostampour et al. [11] have developed an original grouping proof procedure which can be scaled. 

Since the scalability is a challenge in grouping proof procedure, the reader individualistically 

publicizes its messages and tags in order to resolve the scalability problem in the recommended 

procedure. To evaluate the performance of the novel technique, they have served a 64-bit lightweight 

Pseudo-Random Number Generator (64-PRNG) function which satisfies the requirements of low-

power and low-cost systems. 
 

   To confirm the security technology, a test bed has been fabricated to discover the potential cyber-

attacks in the next-generation intelligent power control system environment which is defined like IEC 

and NIST in standard documents and directed the investigates to approve the appropriateness of the 

test bed [12]. The suggested test bed can steadily integrate the new security technologies into the 

industrial important substructure. Besides, it is also predictable that system security and steadiness will 

be improved. 
 



    The nodes mobility problem has been scrutinized so that the recommended solution has an 

appropriate performance in portable environments [13]. Their security mechanism is founded on the 

reliance concept. Reliance is a level of security that every single thing has from the other things for 

achievement in the demanded job without leading to security complications. To reliance things in the 

IoT having a multi-dimensional visualization of the reliance, they have provided a widespread 

hierarchical model. The three most key dimensions that should be taken into account are as follows: 

quality of p2p communication and service and background information. These dimensions and lively 

and versatile techniques, which are utilized in the calculation of the reliance and provided a 

mechanism in order to serve the computed reliance, make available security necessities to handle the 

attacks in the IoT movable environment despite the fact that network performance increases. It is 

worthy to mention that these dimensions are not restricted and the model has the aptitude to take into 

account the other ones on the foundation of the calculation purpose of the reliance. In the developed 

technique, they have incorporated the reliance model into RPL and provided an innovative OF. The 

recommended new RPL procedure was experimentally assessed under attacks of BLACKHOLE, 

SYBIL, and RANK in connection with subsequent performance metrics as packet loss rate, end-to-end 

delay, and average parent variations. 
 

    This research work is intended to implement a new methodology, i.e. profound learning, related to 

the cybersecurity to facilitate the attacks revealing in the public internet of things. The profound model 

performance has been compared to the traditional machine learning method, also, the distributed attack 

detection (DAD) has been assessed versus the concentrate uncovering system [14]. 
 

    In the presence of three individual packets dropping attacks, a sensitivity analysis of TRS-PD 

preformed through a change of different parameters values in various network scenarios have been 

accomplished in [15]. Moreover, this work was a summary of the attack-pattern detection mechanism, 

reliance model, and routing mechanism adopted by TRS-PD to withstand the opponents which follow 

the specific attack patterns accompanied by the other ones. 
 

   Zakaria et al. [18] have impressed via the SDN abilities as they have presented a complete review of 

obtainable SDN-based DDoS attack uncovering and alleviation solutions. According to the DDoS 

attack discovery, they have categorized solutions techniques and determined the necessities of an 

operational solution. Furthermore, on the basis of their outcomes, they have recommended an original 

framework for uncovering and alleviation of DDoS attacks in a large-scale network which composes 

of a smart city built on the SDN substructure. Their recommended framework is able to satisfy the 

application-specific DDoS attack discovery and alleviation needs. The most important involvement is 

double. First, they have provided a detailed investigation and argument of SDN-based DDoS attack 

discovery and alleviation mechanisms, also, they have categorized them regarding the discovery 

methods. Second, by leveraging the SDN features for the network security, they have recommended 

and developed an SDN-established proactive DDoS Defense Framework (ProDefense). 
 

    A basis location security procedure based on dynamic routing addresses the source location 

confidentiality problem. The authors have introduced a self-motivated routing scheme which aims at 

maximizing tracks for data broadcast. At first, the suggested scheme arbitrarily selects a preliminary 

node from the network boundary. All of the packages will make a journey through an avaricious and 

successive directed route before attainment to the sink [19]. 
 

     MLDMF has been presented for IIoT in [20] which comprises the cloud, fog, and edge computing 

level. Software-defined networking (SDN) has been utilized to manipulate the network. These two 

frameworks are combined to advance access security and effectual controlling of IIoT. 
 



   A method called REATO has been presented to identify and neutralize a DoS attack in contrast to 

the IoT middleware known as NPS. The premeditated solution tailored to the NPS architecture has 

been authenticated using a real test-bed and composed by a NPS sample mounted on a Raspberry Pi 

that receives open data feeds in real time via an adaptable set of sources. The work started from the 

obligation to find out a solution is capable of to guard an IoT system towards DoS attacks by 

considering all the potential circumstances that can take place (i.e., attacks to the data sources and 

attacks to the IoT platform) [21]. 
 

    In [22], a deep-learning established machine learning technique is provided for the IoT to discover 

the routing attacks. Using the Cooja IoT emulator, attack data with high fidelity have been generated 

within IoT networks containing 10-1000 nodes. Here, a profound learning-based attack detecting 

method with high scalability was recommended for uncovering the IoT routing attacks that are 

reduced rank, hello-flood, and version number modifying attacks by amazing meticulousness and 

accurateness. To use deep learning for cyber security within the IoT, the availability of significant IoT 

attack data is essential. 
 

   In the article [23], a trust and time-based RPL routing protocol (SecTrust-RPL) is proposed to secure 

IoT networks from routing attacks. A Secure Trust (SecTrust) architecture is embedded in the RPL 

routing protocol to protect against malicious attacks based on trust to detect and isolate attacks in order 

to improve security and network performance. 
 

    In the article [24], the proposed solution consists of two stages; in the first stage, using fuzzy logic-

based approach to detect on-off attacks, as well as intruders who perform destructive behaviors in the 

network. In the second step, the authors proposed a fuzzy logic-based method for identifying 

destructive nodes involved in providing destructive services. 

    Table 1 recapitulates the performed efforts in order to design IDS for the IoT (”-” stands for an 

indefinite characteristic). 
 

 

Table 1: Comparison between detection schemes for IoT 

References Placement schema Detection schema Attack type Validation schema 

[3] Centralized Anomaly-based DoS _ Simulation  

[4] Hybrid Hybrid Routing attack _ Simulation  

[5] Distributed Signature-based Side-channel attack _ None  

[6] Hybrid Hybrid Physical-layer attack _ Simulation  

[7] Hybrid Hybrid Multiple conventional attacks _ Simulation  

[8] Distributed Signature-based MIMA, replay and impersonation attack – 

[9] – Signature-based Multiple conventional attacks – 

[10] Centralized Anomaly-based DDoS – 

[11] – Hybrid RFID attacks _ None  

[12] Centralized Hybrid Cyber-attacks _ Simulation  

[13]  Hybrid Routing attacks _ None  

[14] Distributed Signature-based Distributed attack – 

[15] Centralized Anomaly-based Packet dropping attacks – 

[16] – Anomaly-based Replay Attack – 

[17] Distributed Signature-based Collusion attacks _ None  

[18] – Anomaly-based DDoS – 

[19] Distributed Signature-based Cyber-attacks _ Empirical  

[20] – Anomaly-based DDoS _ Simulation  

[21] Centralized Anomaly-based DoS _ Simulation  

[22] Hybrid Signature-based Routing attacks _ Simulation  

[23] Distributed Security Trust Sybil & Rank attack _ Simulation  

[24]  Hybrid Fuzzy logic On-off attacks _ Simulation  



 

In Table 2, a comparison of detected attacks and categories in the literature is highlighted. 

 

 
 

Table 2 Security threats detection schemes for IoT. 

Proposed system Detected attacks Category 

Pacheco et al. (2017) variety of cyberattacks DoS 

Chen et al. (2018) Network layer attacks Routing attack 

Moon et al. (2018) Side-channel and power analysis attack Side-channel attack 

Jiang et al. (2018) physical-layer security Physical-layer attack 

Adat et al. (2017) An energy consumption model for detecting of the DoS  Multiple conventional attacks 

Alamr et al. (2016) MIMA, replay and impersonation MIMA, replay and impersonation 

Deng et al. (2018) hijack attack Multiple conventional attacks 

Bhunia and Gurusamy (2017) malicious attacks DDoS 

Rostampour et al. (2017) RFID attacks RFID attacks 

Lee et al. (2017) Stuxnet attack Cyber-attacks 

Qin et al. (2019) DDoS DDoS 

Hashemi et al. (2018) Cyber-attack Routing attacks 

Diro and Chilamkurti (2017) Topology attacks on RPL  Distributed attack 

Jhaveri et al. (2018) Sinkhole and neighbor attacks Packet dropping attacks 

Jan et al. (2017) Cyber-attack Replay Attack 

Yaseen et al. (2017) Packet forwarding misbehavior Collusion attacks 

Bawany et al. (2017) DDoS DDoS 

Han et al. (2017) eavesdropping, hop by and direction-oriented attack Cyber-attacks 

Yan et al. (2018) multi-level DDoS DDoS 

Sicari et al. (2018) Denial of Service (DoS) attack DoS 

Yavuz et al. (2018) Cyber security Routing attacks 

 

 

3 Security attacks of IoT network 
Four groups of attacks on the IoT network are shown in Figure 2. From each group, we described 

attacks that were more destructive than all of those attacks. 

 



 
Fig. 2 Category of attacks on IoT. 

 

3.1. Physical attacks 
Physical attacks carry out malicious operations on hardware devices. 
 

1) Node Tampering: Physical attacks carry out malicious operations on hardware devices. 
 

2) RF Interference: In this attack, the intruder performs DoS attacks by sending noisy signals on 

the radio frequency signals. These signals are used to communicate RFID. 

 
 

3) Node Jamming: In this attack, the attacker disrupts the IoT wireless communication network 

and leads to a DoS attack. 
 

4) Physical Damage: In this attack, the attacker physically damages the components of the IoT 

ecosystem and leads to a DoS attack. 
 

 

5) Social Engineering: In this attack, the intruder physically contacts the users of the IoT 

ecosystem and manipulates their data. The intruder obtains sensitive information from the IoT 

to achieve its goals. 

 



3.2. Network attacks 
This group of attacks on the IoT ecosystem network is carrying out destructive operations. 

 

1) Traffic Analysis Attacks: The hacker tracks and checks the messages exchanged on the network 

to obtain network information. 
 

2) RFID Spoofing: The attacker deceives the RFID signals. It then records the information 

transmitted from an RFID tag. This type of attack seems to have the correct information and is 

accepted by the system. 
 

3) RFID Cloning: The hacker copies data from the previous RFID tag to another RFID tag. The 

original ID does not copy the RFID tag. An intruder can mislead data or control data passed 

through a cloned node. 
 

 

4) RFID Unauthorized Access: An intruder can view, modify, or delete information about nodes in 

the IoT network if the correct authentication is not performed on RFID systems. 
 

5) Man in the Middle Attacks: In this attack, the enemy stopped the connection between the two 

nodes in the IoT network through the Internet and stole sensitive information by eavesdropping. 
 

6) Sinkhole attack: One of the main attacks threatening the IoT is the attack known as the Sinkhole 

(SH) attack. In these attacks, a malicious node broadcasts illusive information regarding the 

routings to impose itself as a route towards specific nodes for the neighbouring nodes and thus, 

attract data traffic. The objective of this process is to draw all the traffic in the network towards 

the sinkhole node and as a result, alter the packets of data or silently drop them altogether. 

Sinkhole attacks can increase the network overhead, increase the consumption of energy and 

decrease the life time of the network , and ultimately annihilate the network [2]. A screenshot of 

a simulated RPL network is shown in Fig. 2. 

 

Fig. 2 An RPL network’s screenshot simulated with sinkhole attack by node 25, implementing actual IoT 

technologies, indicated that RPL is affected by sinkhole attacks. 

 

 

3.3. Software attacks 
In this category of attacks, the intruder uses worms, viruses, annoying advertising tools and spyware 

to repel services and steal data. 



 
1) Malicious Scripts: In this attack, the intruder can inject the malicious script into the IoT network 

and take control of the system. 
 

2) Denial of Service: The attacker blocks users from the Application layer and refuses to provide 

services to them. 

 

3.4. Encryption attacks 
In this type of attack, the intruder tries to get the private key to destroy the encryption technique. 

 
1) Side-channel Attacks: In this attack, an intruder uses the side channel to obtain any information 

from the network. The attacker uses this information to identify the encryption key. This is 

neither a plaintext nor a ciphertext, but it does contain information about the power, the time 

required to perform the operation, and the error frequency. 
 

2) Cryptanalysis Attacks: The attacker deceives the RFID signals. It then records the information 

transmitted from an RFID tag. This type of attack seems to have the correct information and is 

accepted by the system. 

 
 

4 The proposed SoS-RPL schema 

In the following section, we design an SoS-RPL schema by employing the rating and ranking 

mechanism. Three phases are contained in the SoS-RPL schema: in Sect, 3.1. The overview of the 

SoS-RPL schema is discussed, Sect 3.2. presents detection of the sinkhole node, and elimination of 

the sinkhole nodes in SoS-RPL is discussed in Sect. 3.3. 

 

 

3.1 Phase 1: Overview of the SoS-RPL model for detecting sinkhole node 

In sinkhole attacks, the malicious node declares an artificial useful route. This way, many of the 

nodes close to the route traffic are attracted. This attack does not disrupt network operation on its 

own. However, these attacks become very dangerous when they are coupled with another attack. In 

this section, we present an efficient security approach based on the RPL protocol. The proposed 

method is presented under the SoS-RPL and is designed in two phases. In the following section, we 

describe the proposed method. 

 

3.2 Phase 2: Detection of the sinkhole node 

This phase consists of two basic steps to detect sink attack. 

 

Step1: The proposed SoS-RPL algorithm is implemented on top of the RPL protocol. In this 

algorithm, we try to use the behavior of the nodes in the network to identify and delete sinkhole 

nodes so that we can prevent the malicious nodes from providing false information to other nodes in 

the network. When the number of sinkhole nodes in the network increases, the number of 

transmitted DIO messages sent also increases so that the malicious node can introduce itself as the 

root node. Therefore, the overhead increases as the number of malicious nodes in the network 



increases. The higher the overhead, the higher the latency will be. Since latency is an important issue 

while sending security messages in IoT, overhead and therefore latency can be reduced by 

identifying sinkhole nodes in the network. 

The following rules are used in the proposed SoS-RPL algorithm for the detection of the malicious 

sinkhole node: 

• Any node which sends its real rank to its neighbors cannot be malicious. 

• A node which has sent multiple DIO messages to the neighbors which are not its children 

might be malicious. 

• A malicious node is a node which has misrepresented its rank. 

In order to prevent routing loops, the RPL protocol calculates the hop count from a node to the root 

(DODAG). The variable rank represents the position of the node in the proposed method. Rank is 

higher if a node is farther away from the root node. Rank contains useful information for estimation 

of the distance from the root node. The RPL protocol provides a new control message for exchange 

of the routing graph information. This message, known as DIO, is used to announce the information 

used for the creation of DODAG. Therefore, the proposed system uses the rank value for the 

detection of suspicious rank values in the DIO message. The RPL protocol provides a new ICMPv6 

control message for exchange of the routing graph information. The attacker can send a fake 

ICMPv6 routing packet in order to create a sinkhole. 

    In order to present the overall notion of our suggested technique, Figures 3 and 4 demonstrate how 

the rank values change after and prior to the sinkhole is created. Figure 3 presents how the rank 

value for each node is determined by RPL. The root node possesses rank zero and the rank value for 

each node is equal to the hop count from that node to the root plus one. 

Figure 4 demonstrates how the rank value changes after the malicious node is created. M1 is 

deployed among the nodes and creates the sinkhole. 

 

Fig. 3 RPL protocol operation under normal conditions 

 



 

Fig. 4 RPL protocol performance under sinkhole attack conditions 

 When a new node is added to the network, the root node sends a DIO message to nodes M1 and 

N1 in order to update the routing table. The rank values of nodes N3, N1, and M1 are one. However, 

when the malicious node M1 forwards the DIO message to other neighboring nodes to update the 

rank values, it declares its own rank to be zero. The proposed SoS-RPL method utilizes the rank 

value in order to identify the sinkhole node. In the proposed SoS-RPL method, DIO messages are 

gathered through the suggested system. The rank values are then extracted from these DIO 

messages. By extracting the DIO messages, the suggested system detects whether the DIO message 

is from a malicious node or not. 

 In the proposed SoS-RPL method, it is assumed that an IoT network does not contain any 

malicious nodes when it is deployed. The correct routing tables for every node are broadcast in the 

newly deployed network before the sinkhole attacks occur. The proposed method defines two 

features for irregular DIO message detection: DV-RANK and DI-RANK. DV-RANK is presented in 

Eq. (1) as the rank difference between a node and its parent. The value of this feature is attained 

when creating or updating the routing table: 

 

( ) ( )DV RANK ParentRank NodeRank− = −   (1) 

 

 For example, in figure 3 the DV-RANK value for node N9 is equal to one. This is because its 

rank is four while the rank of its parent, node N8, is equal to three. Therefore, DV-RANK of node 

N9 is equal to: |3-4|=1. 

    DI-RANK is defined as the rank difference between the node and the source node which has sent 

the message. This feature is calculated according to Eq. (2). For example, node N9 received the 

message from node N8 in figure 3. Node N9 then calculated the DI-RANK value. Since the rank of 

the message sender node, node N8 in this example, is three, the DI-RANK value will be equal to 

one. This is because the rank value of the sender node is three and the node itself has a rank equal to 

four. |3-4|=1. 

 However, when a malicious sinkhole node infiltrates the network, as represented in figure 4, this 

node declares its rank to be zero in the DIO message. This way, it introduces itself as the root node 

and sends this message to all of the neighboring nodes. When node N9 receives a DIO message from 

the malicious node M1, it needs to calculate the DI-RANK value. Since the rank for the source node 

which has sent the message is zero and the rank value for node N9 is four, DI-RANK will be equal 

to 4. Therefore, the DI-RANK value for node N9 in figure 4 is equal to |0-4|=4. 



 

( ) ( )                 DI RANK Rank of the sourcemessage sender node Rank of thenode− = −   (2) 

   

 The proposed SoS-RPL method considers the DIO message to be malicious when DI-

RANK>DV-RANK. In figure 4, the DIO message sent by node M1 will be identified as malicious 

by node N9 using DI-RANK>DV-RANK. 

 

Step2: The mechanism to detect physical layer attack in LSFA-IoT 
In the second step of our proposed SoS-RPL method, the malicious nodes producing fake RREQ

packets in the network are detected. As mentioned earlier, to run this step, we should first detect the 

misbehaviors in the network. The separation of these two steps has made the operations required for 

malicious node detection optimized. After running the detection process, every node should search 

the list of its neighbors to find the neighbor that has produced a large number of RREQ packets. To 

detect the source of flooding attacks, each node calculates the number of produced RREQ s. To do 

this, we use a weighted average formula in the SoS-RPL. Average Packet Transmission RREQ  (

APT RREQ− ) is used to calculate the average transmission of RREQ packets. The average 

transmission is used by series data in a certain period to smooth the specified short-term and long-

term fluctuations. We analyze our observations about RREQ packets in a period using these 

calculations. APT RREQ−  may be calculated recursively for X series. Eq. (3) demonstrates the 

calculation.       
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According to the proposed method, we use different values of 𝛼 to detect flooding attacks. The 

APT RREQ−  can be applied with the low values of 𝛼 to check network when it is under a flooding 

attack. However, the high values of 𝛼 can help to analyze the general observations of the network in 

a certain period and detect attack source. The number of sent RREQ is determined for each node after 

information acquisition using the Hello message. Each node calculates APT RREQ−  value for its 

neighbor nodes by receiving a Hello message from them and getting the information of the neighbor 

node. We consider a threshold for APT RREQ−  each time. If the value of APT RREQ−  or a node 

exceeds the threshold, it indicates that the number of the RREQ messages transmitted by this node is 

far more than the expected threshold. Therefore, this node is detected as malicious. 

 

3.3 Phase 3: Elimination of the sinkhole nodes 

By applying the proposed system to all of the nodes, the nodes will ignore any irrational DIO 

message and add the ID of the malicious node to their blacklist. Also, the nodes which have 



identified the malicious node, forward its ID to the root using the ICMPv6 message. This way, the 

root node can notify all of the nodes in the network of existence of the malicious node. Therefore, 

sinkhole attacks will be prevented. The proposed system is easily implemented and does not require 

any complex calculations or additional hardware. 

    Flowchart of the malicious node detection process in the proposed SoS-RPL method is presented 

in figure 5. Since this is a distributed algorithm, each node in the IoT network checks the properties 

extracted from the header packet to observe the presence of a sinkhole node within the network. As 

mentioned before, in order to make the detection process shorter, malicious nodes are stored in 

blacklists once detected. Therefore, the detection system does not need to examine them again. If the 

ICMPv6 message is assumed to be safe, the receivers will update their routing and neighboring 

nodes table. 

 

Fig. 5 Flowchart of the SoS-RPL. 
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5 Performance evaluation 

The suggested SoS-RPL performance will be assessed in the next section to avoid the sinkhole attack 

problem. 

 

4.1 Performance metrics 

The performance and efficacy of the proposed SoS-RPL method is completely investigated in this 

section using comprehensive simulations. The obtained results will be compared with SecTrust-RPL, 

Fuzzy-IoT, IRAD, and REATO methods discussed in [23], [24], [25], and [26]. The detection rate, 

false-negative rate, false-positive rate, packet delivery rate, maximum throughput, and packet loss 

rate are assessed. The meaning of notations and abbreviated used in the equations are given in Table 3 

and Table 4. 

 

 

Table 3 The parameters 

specified for PDR 

Notations Means 

iX   Number of packets received by node i 

 iY   Number of packets sent by node i 

 n  Experiments 

 

 

 

 

PDR: The number of packets received by the destination node is divided by the number of packets 

sent by the source node. Eq. (4) determines the PDR. 
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Table 4 Abbreviated notations Parameters Description 

 FPR     False positive rate  

 FNR     False negative rate  

 TPR     True positive rate  

 TNR     True negative rate  

 DR   Detection rate  

 PDR    Packet delivery rate  

 PLR   loss Packet rate  

 
iA  Received packets by node i 

 
SE  Packet size 

 
PD  Simulation stop time 

 
TD  Simulation start time 

 Ex   Experiments 

   Throughput 

 N   Experiments 



 

FPR: The FP is determined by the total number of nodes mistakenly found as the malevolent nodes 

divided by the total number of usual nodes [25-27]. Hence, Eq. (5) illustrates the  
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FNR: The rate of the malevolent node to total normal nodes incorrectly signed as a normal node 

[28-30]. The calculation is proved by Eq. (6). 
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DR: Ratio of sinkhole nodes to total malicious nodes that were correctly diagnosed as sinkhole 

attack. Eq. (7) determines the DR. 
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PLR: Percentage of data packets deleted by the intruder node [31,32]. The PLR is calculated using 

Eq. (8) as follows: 
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(8) 

 

Maximum throughput: In the IoT ecosystem, throughput is the amount of data packets generated by 

the source node and successfully received at the destination node. The unit of throughput is kilobits 

per second (Kbps) [33]. The throughput is calculated using Eq. (9) as follows: 
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(9) 

 

 

4.2 The simulation environment 

Since implementing and debugging IoTs in real networks is difficult, considering simulations as a 

basic design instrument is necessary. The primary benefit of simulation is simplification of analysis 

and verification of protocol, especially in large systems [34]. In this part, the suggested method’s 

performance is assessed by NS-3 as the simulation instrument, and then the results will be discussed. 



It should be noted that all SoS-RPL, REATO and IRAD settings and parameters are considered as 

equal. 

 

 

4.3 Simulation results 

The SoS-RPL performance is analyzed in this section under the four scenarios (Table 5). Initially, 

500 nodes are deployed in the IoT area in a uniform manner. Table 5 gives some major parameters.  

 

Table 5: Parameters used. 

Parameters Value 

MAC  802.11. b  

Traffic CBR 

Speed 150 m/s 

Size of packet  512 Byte 

Malicious rate 10%, 20%, 30% 

Type of attacks Sinkhole  

Transmission range 20 M 

Selection of target node Random 
 

Table 6 gives some major parameters for four scenarios. 

 

Table 6 Parameters used for four scenarios. 

Scenario #1 Scenario #2 

Sinkhole rate 10% Sinkhole rate 20% 

Topology (m x m) 100*100 Topology (m x m) 100*100 

Time 1000 Time 1000 

Scenario #3 Scenario #4 

Sinkhole rate 30% Attack interval 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 

Topology (m x m) 100*100 Topology (m x m) 100*100 

Time 1000 Time 1000 

 

Performance of SoS-RPL, REATO, and IRAD in terms of DR, FNR, FPR, and PDR are shown in 

Table 7-10. 

 

 

 

 



 

Table 7 DR (30% sinkhole 

node of overall nodes) of 

various approaches. 

Attack interval DR (%) 

  

IRAD 

 

REATO 

 

Fuzzy-IoT 

 

SecTrust-RPL 

 

 

SoS-RPL 

 0.5 68 73 75 75 89 

1 68 74 76 77 91 

1.5 69 74 77 79 93 

2 71 75 79 81 94 

2.5 72 77 80 83 95 

3 72 78 81 85 97 

3.5 73 80 82 87 97 

4 74 81 83 89 98 

 

Table 8 FNR (30% sinkhole 

node of overall nodes) of 

various approaches. 

Attack interval FNR (%) 

  

IRAD 

 

REATO 

 

Fuzzy-IoT 

 

SecTrust-RPL 

 

 

SoS-RPL 

 0.5 18.6 15.6 15.1 15 12.98 

1 17.87 14.6 14.2 14 12.8 

1.5 17.4 13.7 13.1 12.5 11.8 

2 16.8 12.7 12.2 12 11.5 

2.5 16.67 12.4 12 11 10.5 

3 16.3 11.8 11.1 10.5 9.8 

3.5 15.8 11.3 11 10.1 9.65 

4 14.5 10.4 10.1 10 9.2 

 

Table 9 FPR (30% sinkhole 

node of overall nodes) of 

various approaches. 

Attack interval FPR (%) 

  

IRAD 

 

REATO 

 

Fuzzy-IoT 

 

SecTrust-RPL 

 

 

SoS-RPL 

 0.5 26.1 23.6 21.5 19.5 15.6 

1 25.4 22.87 20.3 19.1 14.6 

1.5 24.5 21.4 19.9 18 14.2 

2 24.3 20.8 18.7 17 13.7 

2.5 24.1 19.67 18.1 16 13.4 

3 23.5 18.9 17.4 15.8 13.8 

3.5 22.7 18.8 17.1 15.4 13.3 

4 21.6 17.5 16.05 15 12.4 

 

Table 10 PDR (30% sinkhole 

node of overall nodes) of 

various approaches. 

Attack interval PDR (%) 

  

IRAD 

 

REATO 

 

Fuzzy-IoT 

 

SecTrust-RPL 

 

 

SoS-RPL 

 0.5 62 78 75 76 80 

1 63 79 77 78 82 

1.5 63 80 80 81 86 

2 65 82 83 85 89 

2.5 68 85 87 89 92 

3 69 86 90 92 94 

3.5 71 86 91 93 97 

4 73 87 92 94 98 

 



DR: Figure 6 provides a comparison between the SoS-RPL suggested scheme, REATO, IRAD, 

Fuzzy-IoT, and SecTrust-RPL models based on DR. Based on the diagrams, the detecting rate in 

every 3 approaches is reduced in terms of scenarios, particularly with the high number of attacks. 

For the IRAD, this reduction is much higher compared to the other mechanisms. By the suggested 

design, it is possible to detect all the above attacks at a detection rate of over 95%. This finding is 

attained by the rate of malicious nodes and the number of normal nodes as 30% and 600, 

respectively. The proposed design is superior as a result of the fast detecting the malicious nodes and 

removing them by mapping the antigenic and unsafe routes detected by the antibody-trained model 

and eliminated from the operation cycle. Therefore, according to Figure 6, the detection rate of the 

proposed method is 17%, 15, 13 and 10% higher than the REATO, IRAD, Fuzzy-IoT, and SecTrust-

RPL methods, respectively. 

(a): 10% sinkhole node 

 

 

(b): 20% sinkhole node 

 

 

(c): 30% sinkhole node 

 

 

Fig. 6 DR vs Number of nodes . 

 

FNR: Figure 7 represents a comparison between the SoS-RPL suggested scheme, REATO and 

IRAD models based on FNR in lethal attacks. According to the diagrams, the FNR of the SoS-RPL 

suggested scheme incremented slightly, however, this value is much higher in the REATO and 

IRAD. In Figure 7(a), the suggested scheme contains the FNR of less than 1.2% by the number of 

normal nodes of 600, however, it is 13 and 18% respectively for the other two methods. In Figure 

7(b), by the malicious nodes rate of 16%, it is less than 4% in the suggested design that is 22% and 

7% for the other two approaches respectively. In Figure 7(c) the FNR is explained under security 

threats with the 23% malicious node). Based on the results in Figure 7(c), it is indicated that in the 

conventional method, over security threats, the FNR at Misbehaving nodes ratio of 0.09 is around 



1.6% increasing to around 8% at 0.36 in a misbehaving nodes ratio condition. Therefore, according 

to Figure 6, the FNR of the proposed method is 21%, 19, 17 and 15% higher than the REATO, 

IRAD, Fuzzy-IoT, and SecTrust-RPL methods, respectively. 

 

 

Fig. 7 FNR vs Number of nodes . 
 

FPR: in Figure 8, the comparison is provided between the suggested SoS-RPL framework against 

four methods of one risk-based algorithm and game theory-based techniques. According to the 

Figure 8(a), by the number of normal nodes within the range of 100-400 and increasing the rate of 

malicious nodes from 0 to 30%, a slight and moderate growth existed in the FPR created by the 

suggested design in comparison to the other two designs. By the malicious nodes rate and the 

number of normal nodes of 30% and 400, respectively, the FPR of the SoS-RPL is less than 3%. 

Though, this quantity is 32% for the IRAD, 28% for the REATO, 25% for the Fuzzy-IoT, and 20% 

for the SecTrust-RPL. The proposed design is superior as a result of its fast detection of malicious 

nodes and removing them by collaboration between normal nodes and ground stations that the 

process is carried out by the trained rules stored in memory. Moreover, it is superior by the fact that 

the suggested algorithm discovers the security threats and separates them from the IoT network, 

hence, the FPR caused by the attacks is reduced. 

 

(a): 10% sinkhole node 

 

 

(b): 20% sinkhole node 

 

 

(c): 30% sinkhole node 

 



 

Fig. 8 FPR vs Number of nodes . 

 

 

 

 

 

In Figure 9, the association between the number of nodes and PDR is represented. By the number of 

nodes as 50, the PDR of REATO, IRAD, Fuzzy-IoT, and SecTrust-RPL are relatively low, since 

some packets are not able to reach the destination prior to expiring the timeout period. By 

incrementing the number of nodes, most packets can be delivered to the destination, hence, a slight 

enhancement is observed in the PDR. A slight degradation is observed in the packet delivery ratio of 

SoS-RPL, by the number of nodes as 50 and 100 appearing due to random factors in simulation. 

Based on the overall trend, SoS-RPL outperforms both REATO and IRAD based on the PDR by the 

number of nodes exceeding 150-500. According to Figure 9(a), (b) and (c), SoS-RPL reduces the 

PDR by over 32% and 22% compared to the REATO and IRAD models, respectively. 

 

 

(a): 10% sinkhole node 

 

 

(b): 20% sinkhole node 

 

 

(c): 30% sinkhole node 

 



(a): 10% sinkhole node 

 

 

(b): 20% sinkhole node 

 

 

(c): 30% sinkhole node 

 

 

Fig. 9 PDR vs Number of nodes . 

One of the important and effective criteria in IoT ecosystem is the throughput criterion. Therefore, 

we considered this criterion as well for evaluating the SoS-RPL proposed method. Figure 10 shows 

that the proposed SoS-RPL method performs better compared to the REATO, IRAD, Fuzzy-IoT, and 

SecTrust-RPL protocol under the sinkhole attack at different times. This is because the proposed 

method makes more packets reach the destination in a single time unit. Therefore, the SoS-RPL 

method has higher throughput compared to the REATO, IRAD, Fuzzy-IoT, and SecTrust-RPL 

protocol under attack in a specified time unit. Using the ranking of the nodes along with sending 

security messages, malicious nodes are quickly identified in the proposed method. This leads to 

increased throughput and decreased delay and ultimately, increased throughput in the network. 

 

 

 



(a): 10% sinkhole node 

 

 

(b): 20% sinkhole node 

 

 

(c): 30% sinkhole node 

 

 

 

Fig. 10 Maximum throughput vs Number of nodes . 

Figure 11 illustrates the relationship between the PLR and the number of things under the identical 

setting expressed in Table 5 and Table 6. When the number of things is 50, we see that some packets 

cannot arrive themselves to the destination before the timeout period terminates; so, the packet loss 

ratios of REATO, IRAD, Fuzzy-IoT, and SecTrust-RPL are somewhat high. As the number of things 

increases, most packets can be delivered to the destination; hence, we can see a small enhancement 

in the packet loss ratios. The packet loss ratio of SoS-RPL has an insignificant degradation when the 

number of Things is 50 and 100. This is due to the presence of random factors in the simulation 

process. From a general point of view, when the number of things goes beyond 100-500, SoS-RPL 

doing better than REATO, IRAD, Fuzzy-IoT, and SecTrust-RPL methods in terms of the packet loss 

ratio. As shown in the Figure 11(a), (b) and (c), SoS-RPL decreases the PLR by more than 27, 15, 

23, and 19% those of REATO, IRAD, Fuzzy-IoT, and SecTrust-RPL models, respectively. 

 



(a): 10% sinkhole node 

 

 

(b): 20% sinkhole node 

 

 

(c): 30% sinkhole node 

 
 

Fig. 11 PLR vs Number of nodes . 

 

5 Conclusion 

In this paper, the issue of designing a sinkhole detection method in the internet of things was 

addressed. In the proposed SoS-RPL method, a sinkhole detection mechanism based on the RPL 

routing protocol and without the need for any additional hardware was presented. The proposed SoS-

RPL method is focused on the IPV6 access of the devices in the IoT network. The malicious nodes 

can generate fake DIO messages to avoid being detected. However, in the proposed method, these 

messages are detected and the malicious node is identified and added to the blacklist. Using NS-3, 

SoS-RPL scheme’s performance was analyzed, and it was indicated that it has a high-level 

performance with a low FPR (below 4.16%), low FNR (below 4.04%), low PLR (below 2.16%), a 

high level of security, high detection rate (above 96.19%), high PDR (above 94.17%), and high 

throughput (above 2700 kbps) in comparison with the present methods. 
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