Skip to main content
Log in

Channel Estimation in Massive MIMO Systems Using a Modified Bayes-GMM Method

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we study the uplink channel estimation based on machine learning algorithm in massive MIMO systems. Based on the sparsity of channel gains in the beam domain, we use Gaussian mixture model (GMM) to model the channel. The expectation maximization (EM) algorithm is adopted to obtain the parameters of GMM. Bayesian algorithm is used to estimate the channel gains. The approximate message passing (AMP) algorithm is used to solve the multiple integrals in Bayesian estimation algorithm to reduce the computational load. When determining the initial values of AMP and EM algorithms, the hierarchical clustering algorithm is adopted to improve the mean square error (MSE) and convergence performance of the algorithm. Simulation results show that the performance of the proposed algorithm is better than that of the traditional least square (LS) algorithm and the existing Bayes-GMM algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qiao, Y., Yu, S., Su, P., et al. (2005). Research on an iterative algorithm of LS channel estimation in MIMO OFDM systems. IEEE Transactions on Broadcasting, 51(1), 149–153.

    Article  Google Scholar 

  2. Zamirijafarian, H., & Pasupathy, S. (2007). MIMO-OFDM channel estimation using improved LS algorithm. In Vehicular technology conference, 2006. Vtc-2006 Fall. 2006 IEEE (pp. 1–5). IEEE.

  3. Srivastava, V., Ho, C. K., Fung, P. H. W., et al. (2004). Robust MMSE channel estimation in OFDM systems with practical timing synchronization. In Wireless communications and networking conference, 2004. WCNC. (Vol. 2, pp. 711–716). IEEE.

  4. Noh, M., Lee, Y., & Park, H. (2006). Low complexity LMMSE channel estimation for OFDM. IEE Proceedings-Communications, 153(5), 645–650.

    Article  Google Scholar 

  5. Kang, Y., Kim, K., & Park, H. (2007). Efficient DFT-based channel estimation for OFDM systems on multipath channels. IET Communications, 1(2), 197–202.

    Article  Google Scholar 

  6. Lebrun, G., Spiteri, S., & Faulkner, M. (2004). Channel estimation for an SVD-MIMO system. IEEE International Conference on Commun, 5, 3025–3029.

    Google Scholar 

  7. Robert, C. (2014). Machine learning, a probabilistic perspective. Chance, 27(2), 62–63.

    Article  Google Scholar 

  8. Wen, C.-K., Jin, S., Wong, K.-K., et al. (2015). Channel estimation for massive MIMO using Gaussian-mixture bayesian learning. IEEE Transactions on Wireless Communications, 14(3), 1356–1368.

    Article  Google Scholar 

  9. Hoydis, J., Hoek, C., Wild, T., et al. (2012). Channel measurements for large antenna arrays. In International symposium on wireless communication systems (pp. 811–815). IEEE.

  10. Bajwa, W. U., Haupt, J., Sayeed, A. M., et al. (2010). Compressed channel sensing: A new approach to estimating sparse multipath channels. Proceedings of the IEEE, 98(6), 1058–1076.

    Article  Google Scholar 

  11. Shiu, D. S., Faschini, G. J., Gans, M. J., et al. (2002) Fading correlation and its effect on the capacity of multi-element antenna systems. In IEEE 1998 international conference on universal personal communications (pp. 502–513). IEEE.

  12. Sun, C., Gao, X., Jin, S., et al. (2015). Beam division multiple access transmission for massive MIMO communications. IEEE Transactions on Communications, 63(6), 2170–2184.

    Article  Google Scholar 

  13. Adhikary, A., Nam, J., Ahn, J.-Y., et al. (2013). Joint spatial division and multiplexing: The large-scale array regime. IEEE Transactions on Information Theory, 59(10), 6441–6463.

    Article  MathSciNet  MATH  Google Scholar 

  14. Payami, S., & Tufvesson, F. (2012). Channel measurements and analysis for very large array systems at 2.6 GHz. In European conference on antennas and propagation (pp. 433–437). IEEE.

  15. Pedersen, K. I., Mogensen, P. E., & Fleury, B. H. (1997). Power azimuth spectrum in outdoor environments. IEE Electronics Letters, 33(18), 1583–1584.

    Article  Google Scholar 

  16. Correia, L. M. (2001). Wireless flexible personalized communications. Computer Communications, 26(18), 2106.

    Google Scholar 

  17. Alspach, D. L., & Sorenson, H. W. (2003). Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions on Automatic Control, 17(4), 439–448.

    Article  MATH  Google Scholar 

  18. Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions. Publications of the American Statistical Association, 81(394), 446–451.

    Article  MathSciNet  MATH  Google Scholar 

  19. Poor, H. V. (1994). An introduction to signal detection and estimation. New York, NY: Springer.

    Book  MATH  Google Scholar 

  20. Krzakala, F., Mézard, M., Sausset, F., et al. (2012). Probabilistic reconstruction in compressed sensing: Algorithms, phase diagrams, threshold achieving matrices. Journal of Statistical Mechanics: Theory and Experiment, 2012(8), P08009.

    Article  Google Scholar 

  21. Hirsch, J. E. (1983). Discrete hubbard-stratonovich transformation for fermion lattice models. Physical Review B, 28(7), 4059–4061.

    Article  Google Scholar 

  22. Bromiley, P. A. (2003). Products and convolutions of Gaussian probability density functions density functions. Tina Memo Internal Report, 2003(3), 1–13.

    Google Scholar 

  23. Vila, J. P., & Schniter, P. (2012). Expectation-maximization Gaussian-mixture approximate message passing. IEEE Transactions on Signal Processing, 61(19), 4658–4672.

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61271235) and the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, P., Wang, Y. Channel Estimation in Massive MIMO Systems Using a Modified Bayes-GMM Method. Wireless Pers Commun 107, 1521–1536 (2019). https://doi.org/10.1007/s11277-019-06339-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06339-5

Keywords

Navigation