Wireless Pers Commun (2013) 73:1421-1437
DOI 10.1007/s11277-013-1258-x

Repackaging Attack on Android Banking Applications
and Its Countermeasures

Jin-Hyuk Jung - Ju Young Kim -
Hyeong-Chan Lee - Jeong Hyun Yi

Published online: 14 June 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Although anyone can easily publish Android applications (or apps) in an app mar-
ketplace according to an open policy, decompiling the apps is also easy due to the structural
characteristics of the app building process, making them very vulnerable to forgery or mod-
ification attacks. In particular, users may suffer direct financial loss if this vulnerability is
exploited in security-critical private and business applications, such as online banking. In
this paper, some of the major Android-based smartphone banking apps in Korea being dis-
tributed on either the Android Market or the third party market were tested to verify whether
a money transfer could be made to an unintended recipient. The experimental results with
real Android banking apps showed that an attack of this kind is possible without having
to illegally obtain any of the sender’s personal information, such as the senders public key
certificate, the password to their bank account, or their security card. In addition, the cause
of this vulnerability is analyzed and some technical countermeasures are discussed.

Keywords Smartphone application vulnerability - Android app repackaging -
Reverse engineering
1 Introduction

The number of Android-based smartphones is growing rapidly. As a relative latecomer to
the smartphone market, one of the top priorities of Android-based smartphones is openness,

J.-H. Jung - J. Y. Kim - H.-C. Lee - J. H. Yi (X))
School of Computer Science and Engineering, Soongsil University, Seoul, Korea
e-mail: jhyi@ssu.ac.kr

J.-H. Jung

e-mail: nemojjh@ssu.ac.kr

J. Y. Kim

e-mail: juyoungkim@ssu.ac.kr

H.-C. Lee
e-mail: iclear0708 @ssu.ac.kr

@ Springer

1422 J.-H. Jung et al.

so that it can quickly gain market share and be adopted by more companies. Accordingly,
the Android Market the key market in which apps are distributed is also run in an open way.
Anyone can register as an app developer, self-sign developed apps, and register them without
having to go through a complicated procedure. In addition, Google allows for app markets
run by third parties in an attempt to overcome the disadvantage of being a latecomer, which
has led to rapid growth. However, this kind of open policy in which anyone can publish apps
on the market has a fundamental weakness: apps containing malicious code can be published
just as easily. In addition, Android apps can be easily decompiled due to their structural
characteristics [7], which mean that apps modified in this way can be repackaged. Amid the
current situation in which this kind of vulnerability exists, more and more Android-based
financial service apps, including banking apps, are finding their way into user’s hands.

We analyze whether it is possible to use repackaging attacks to forge or modify some of the
most popular smartphone banking apps being distributed in South Koreas Android Market.
Specifically, when a user requests a money transfer from a sender to an intended recipient
in the money transfer service provided by a banking app, a forged app tries to transfer the
money to an unintended attackers account instead. Whether this is actually possible is tested
by publishing the forged app on the real Android Market. The experimental results showed that
repackaged forged apps ran successfully for all seven of the banking apps tested. This means
that attackers can successfully perform an attack with just the forged app, without needing
to obtain any of the following: the sender’s public key certificate, the account password,
and the security card. Further, we analyze the root cause for this and investigate technical
countermeasures for the vulnerability.

This paper is organized as follows. Section 2 takes a brief look at related work. Section 3
describes the results of a vulnerability analysis performed on actual banking apps. Section 4
describes the attack results of the forged app, which was actually published on the Android
Market. Section 5 attempts to find countermeasures for the repackaging vulnerability. Finally,
the conclusions are presented in Sect. 6.

2 Related Work

This section introduces the building and distribution processes of Android apps, repackaging
vulnerability, and reverse engineering techniques for Android apps.

2.1 Android App Building

Android apps are written in Java. They are ultimately created in the form of Android Appli-
cation Package (APK) files [1]. An APK is a packaged file that includes files needed for app
execution. The types of files included in the app are as follows.

e DalVik Executable (DEX) file: The executable file resulting from compilation of the Java
source code.

e Manifest file: A file containing app properties such as privileges, the app package file,
and version.

e eXtensible Markup Language (XML) file: A file in which the user interface (UI) layout
and values are defined.

e Resource file: A file containing resources required for app execution, such as images.

Figure 1 shows the series of steps for the building and packaging of files that make up
the APK. First, the Java source code is compiled using the Javac compiler (included in

@ Springer

Repackaging Attack 1423

Unsigned Signed
.apk .apk
Java Source Javac -Class dx |
Code Compiler file Converter
Developer's
r' rale k s
-xml | Encoded privaie key Encoded
file _\. J xml file 4 xnl file
Manifest aapt Encoded i Encoded
file Converter Manifest Manifest
R
X, Resources Resources
Resources table table
Signature
T —

Fig. 1 Android app building process. The series of steps for the building and packaging of files are needed
to make up the APK

the Java Development Kit) and outputted in the form of a class file that runs on the Java
Virtual Machine (JVM). The resulting class file is converted to a DEX file using the dx
converter included in the Android SDK [2]. The DEX file runs on the Dalvik Virtual
Machine.

The manifest file, which is in the form of XML, and other XML files needed for app
execution are encoded in binary form. After that, the DEX, XML, manifest, and resource files
are packaged in an APK file, which is in ZIP format. The initially created APK file does not
include the developer signature, which is needed in order to distribute it. The unsigned APK
file can be self-signed with the developer’s private key using Jarsigner [8]. The developer’s
signature and the public key are then added to the APK file, which completes the Android
app building process.

2.2 Android App Distribution

The steps taken by developers to register and distribute their apps on the Android Market are
as follows.

e Developer registration: Anyone canregister as a developer for USD 25. The app developer
makes a request for developer registration by sending his/her personal information and
credit information to the market. The market will then check the information and approve
the registration accordingly.

e App registration: The developer sends a self-signed app to the market and makes a request
for its registration. The market will check that the app is signed and that the package name
does not conflict with that of previously registered apps. If there are no problems, the
app is registered in the market.

e App distribution: The registered app is immediately published to users and distributed to
them at their request.

e App installation and signature verification: A check is done to see whether there are any
installed apps having the same package name; if this is the case, the developer signature

@ Springer

1424 J.-H. Jung et al.

Android or
Publish third-party Download
regular app Market regular app

Developer Attacker =

-
l Unpackaging |—>[Dccompilalionl
L]

Modify Analyze
source code | source code I

chcompilation |—‘| Repackaging |
'—J

Compilation

Packaging

Sign with
developer's [. .
private key Sign with
Publish attacker's
_ 4 forged app rivate ke

Fig. 2 Android app forgery process which exploits repackaging vulnerability

is checked to see whether it is in fact the same app. Depending on the result, the app is
installed, or updated, or the installation is cancelled.

Android allows app distribution by means other than using Googles Android Market. The
Android Market takes the form of an open market structure, allowing for the creation of
third party markets, and distribution can be done via any distribution path, such as website
downloading and side loading. This means that it is possible for developers to update their
apps regardless of the distribution path; all that is required is that the updated app is self-
signed with the same developer’s private key. In Android, this is referred to as a “seamless
update.”

2.3 Repackaging Vulnerability

Security [3, 18] is one of most important issues in various computing environments. Multiple
security holes have been found in different Android components [15,20]. Among these, this
paper focuses on the self-signed app repackaging problem. Reverse engineering techniques
[6] can be used to create forged apps containing arbitrary code in the APK file. This vul-
nerability is caused by the structural characteristics of bytecode [13] that runs on a virtual
machine (VM). Bytecode in object files contains character strings of class names, method
names, member variable names, and so on. In addition, the methods are classified by logic,
facilitating reverse engineering. Figure 2 shows the Android app forgery process, which
exploits this vulnerability.

In this paper, this is referred to as “repackaging vulnerability.” For DEX files, as with
Java applications, object files contain code information, making them vulnerable to reverse
engineering. Consequently, code similar to the original source code can be obtained by
decompiling bytecode that is run on the Dalvik VM. The attacker analyzes the code obtained
by reverse-engineering, inserts malicious code, and then recompiles it to create a forged DEX
file with which he/she can repackage and self-sign the app with his/her private key and then
distribute the forged app.

2.4 Repackaging Attack
Reverse engineering for analyzing Android apps is done primarily through decompilation of

the DEX file, which can be decompiled into either Java code or smali code [16], depending
on the technique used.

@ Springer

Repackaging Attack 1425

To obtain the Java code, tools such as undx [19] and dex2jar [S] can be used to convert the
Dalvik VM bytecode into JVM bytecode and a Java decompiler can then be used to recover
the Java code. The Java class files have to undergo optimization when they are converted by
the dx converter during compilation for use with the Dalvik VM, resulting in the advantage of
obtaining Java code that is written in a high-level language. However, there is a shortcoming
in that the decompilation result and the actual source code do not closely match. Furthermore,
an identical development environment to that of the original source code must be set up in
order to repackage, so this is not suitable for app modification purposes.

Obtaining the smali code, on the other hand, involves getting the code in a lower level
language. In particular, it will be in the form of Dalvik VM assembly, which is mapped
one-to-one with Dalvik VM bytecode [4]. Although analysis will take longer because it is
in a low level language, there is the advantage that the development environment does not
have to be set up to match that used for the original source code because the DEX file is
created by directly converting the Dalvik VM instructions into Dalvik VM bytecode during
repackaging. The latter is used in this study.

The reverse engineering process used when attacking the repackaging vulnerability using
a decompiling technique is as follows.

e Modification point search: The activity information, UI layout, and app execution flow
are gathered and the points at which code is inserted are selected. Logcat [11] can be
used to gather activity names and obtain information on activities that are run during app
execution. The OnCreate function of the activities can then be decompiled in order to
obtain the Ul information and XML information used in the Ul

e Decompilation: After extracting the DEX file in the APK file, a decompilation tool called
baksmali [16] is used to generate the smali source code.

e Code injection and modification: Code containing arbitrary Dalvik VM instructions is
inserted at the modification point or the existing code is modified.

e Manifest change: The package name is changed in the app manifest. When this is done,
the app can be registered on the Android Market without conflicting with existing apps.

e Self-signing: The modified app is self-signed to complete the repackaging.

3 Attack on Android Banking Apps

This section describes the repackaging attack that was carried out based on analysis of the
major banking apps in Korea. Table 1 lists the notations used in this paper.

3.1 Smartphone Banking Apps

Seven Android banking apps were examined in the experiments. Based on components in
which processing requests and the resulting output are displayed, they can be classified
into the following two types: Webview-based apps and Widget-based apps. Table 2 lists the
features of the banking apps chosen for testing.

In general, money transfer using Android banking apps consist of the following four steps,
as shown in Fig. 3.

Step 1 (Anti-virus Checking) This check is done before the banking apps are run to verify
whether an anti-virus app is running. If no anti-virus app has yet been installed, the banking
app invokes anti-virus installation and then executes the anti-virus app first. Figure 4 shows
the sample code for checking whether an anti-virus app is installed.

@ Springer

1426 J.-H. Jung et al.

Table 1 Symbols used in this

paper are described Symbol Description
A Attacker’s name
S Sender’s name
R Recipient’s name
H(x) Hash function on message x
ver APK version

APKorg Original APK file
APK0a4 Modified APK file

ACy Attacker’s account number

ACR Recipient’s account number

$ Amount requested to be transferred

$/ Amount allowed to be transferred after balance checking
PWDg Sender’s account passwords

PSCg Sender’s personal security card information

Sign 4 (x) Signature on message x using entity A’s private key
IDp Bank identifier

Table 2 Analysis of android banking apps in Korea

Name Type APK APK hashing Anti-virus Obfuscation Encryption
version checking applied applied
H-bank Webview 2.12 No Yes No Yes
I-bank Widget 1.1.1 No Yes No Yes
K-bank Widget 1.8 No Yes Yes Yes
N-bank Widget 1.1 Yes Yes No Yes
S-bank Widget 2.6.6 No Yes No Yes
SC-bank Webview 1.5 No Yes No Yes
W-bank Widget 3.0.5 No Yes No Yes

The features of the selected banking apps for testing are summarized

Step 2 (APK Integrity Checking) This is the core part of checking for forgery or modification
of the banking apps. The procedure is as follows. The banking app calculates the hash value
from the original APK file using a hash function, i.e., » = H(APK,,¢), and sends the APK
integrity checking request (AIC_REQ) message containing h and APK version to the banking
server. The banking server then retrieves the original APK hash value (i.e., #") with the APK
version, which is kept in the banking server database. After checking whether & = 4, the
banking server sends the APK integrity checking response (AIC_RES) message with the
checking result to the banking app. Figure 5 shows a sample code for hashing the APK file
using the SHA-256 hash function and sending the hash value to the designated URL using
the APK integrity checking technique applied to N-bank.

Step 3 (Account Holder Checking) Once the integrity-checking step of the APK file is cleared,
the banking app checks the account holder information. It sends the banking server the account
holder checking request (AHC_REQ) message containing the recipient’s account number
(ACR), the amount to be transferred ($), and the sender’s account passwords (PWDy). If all

@ Springer

Repackaging Attack 1427

Banking App Banking Server
r r)
{ CSepl. T TTTTTTT
: Install
1l Anti-Virus
1
1
L}
1
1
\ ——
r . Ty e . i
Step 2]
' ¥ AIC REQ i
| Compute APK hash (I, ver) | Retrieve :
i e 7 -—
! h=HAPK) APK hash HAPE) y
[|
! 1
! i
! I
L 1
! I
L 1
! I
! I
! AIC RES i
I AlC RES—ret :
T i, pc O R | (RIPNOIEPREN | P A SRR y
valhd
| Execute APK,, . Database
;'. Siip s T g S T T R R s s e e i e
T 1
: ACy, 5, PWD, ace s | = m, S1I
! I
I NCiilv seaiiean AHC REQ :
- en ;_:':‘;'E:cﬂ' 8 (ACy. 5. 'WDy) comect o e account !
I i 7 information |
i information .
I Incorrect |
1 I
AHC RES
| (R 1Dy 5" reeNULL | [e, sy !
1 . I
1 or I—. |
1 ACC RES NULL s I
I NULL ACC RES—ret |
! 1
T TSI R A (5 | + OO I PR B b e e s e ’
; et e B Tt
[
\ i
| [
| — !
: IS REO- MIS REQ Mon::-:lr::sl'cr |
: SigndS, R, 1Dy, 8°, PSCy) Procsessing }
1 A H
! Display MIS RIS MTS_RES :
| result 1
‘n-u---—u-—n n—mwn-uﬂ---------—----n'-—nwn-m-w——-n-—-un——]
\ . \ J

Fig. 3 Money transfer process in Android banking apps. The procedure consists of anti-virus checking, APK
integrity checking, account holder checking, and money transfer service

of the account information is correct, the banking server sends the account holder checking
response (AHC_RES) message to the recipient with the recipient’s actual name (R), the
recipient’s bank identifier (/Dp), and the amount allowed to be transferred after balance

@ Springer

1428 J.-H. Jung et al.

Check Anti-virus installed
iget-object vl1, p0, Lcom/webcash/wooribank/Intro;->mV3Install:Lcom/ahnlab/
vimobile/V3iInstall;
invoke-virtual {vl}, Lcom/ahnlab/v3mobile/V3Install;->v3InstallCheck()V

Fig. 4 Banking app routine for checking whether an anti-virus app is installed

checking ($). If the account information is incorrect, the banking server returns a NULL
message.

Step 4 (Money Transfer Service) This is the actual money transfer step. The banking app
constructs a money transfer service request (MTS_REQ) message with the sender’s name
(8), recipient’s name (R), recipient bank identifier (IDg), amount ($'), and the personal
security card number (PSCy). The sender then signs (MTS_REQ) with its private key. Upon
receiving the signed (MTS_REQ) message, the banking server processes the money transfer
service. The detailed process involved in this step is beyond the scope of this paper.

3.2 Repackaging Attack on Banking Apps

When attacking a banking app by exploiting a repackaging vulnerability, the attackers may
attempt direct attacks that may cause financial loss for the user, such as unauthorized money
transfers and stealing passwords. This section describes a particular type of attack in which a
money transfer is made not to the intended recipient, but to the attacker, using a forged app.

The attack is carried out as follows (see Fig. 6). The anti-virus checking routine can be
easily skipped. In the APK integrity-checking step, the forged app sends the hash value
of the original APK file, not that of the forged APK file. It simply cheats the banking
server. Regardless of what the (AIC_RES) message returns, the forged app proceeds with
the forged APK and not the original APK. To obtain the intended recipient’s name and
the attacker’s name, the forged app sends the (AHC_REQ) message to the banking server
twice: one with the intended recipient account number (AC r) and the other with the attacker
account number (AC4). Owing to space constraints, we have skipped the step involving
AHC_REQ(ACg, $, PWDyg) in Fig. 6. In the final step, the forged app requests the money
transfer service with the attacker’s account information using the sender’s original security
card information and the sender’s private key. When receiving the result from the banking
server, it ignores that result containing the attacker’s account information. Instead, it displays
the forged result with the intended recipient’s account information.

After decompiling, the OnCreate method is analyzed in the activity class in order to obtain
the UI information. The attacker can discover that the OnClick handler for the Button class
(among the UI components) processes the money transfer service request and that the money
transfer request confirmation details are outputted using TextView. The attacker can change
the corresponding code to make it such that money is transferred to the attacker’s account
when the user uses the money transfer service, while making it appear to the user as if money
was correctly transferred to the intended recipient. The recipient’s information is shown to
the user, although the forgery app actually does not check the account of the recipient that the
user entered, but that of the attacker, as shown in Step 4. The user proceeds to the next step
without suspicion, and information is also shown confirming that the money was transferred

@ Springer

Repackaging Attack 1429

Calling of APK hashing method
- Argument : "SHA256"
- Return type : Boolean f ™)\

const-string v4, "SHA256"

invoke-direct {p0, vd},
Lbtworks/codeguard/A/A;->A(Ljava/lang/String;)[B

move-result-object vd

(APK hashing method j <
.method private A(Ljava/lang/String;)[B
i Read APK
new-instance v0, Ljava/io/FileInputStream; 2
sget-object vl, Lbtworks/codeguard/A/A;->C:Ljava/io/File;
invoke-direct {v0, vl}, Ljava/io/FileInputStream;-><init>(Ljava/io/
File;)V >

Hash APK
invoke-static {pl}, Ljava/security/MessageDigest;->getInstance(
Ljava/lang/String;)Ljava/security/

MessageDigest;
move-result-object vd
:goto_l7a
if-1t v2, vl1, :cond_le
invoke-virtual {v4}, Ljava/security/MessageDigest;->digest()[B
move-result-object vO0)

—I

[APK hash value transmission routine J

Get hash value)
Envoke—virtual {v1l}, Lnh/smart/NHSmartBankApplication;
->getStrCodeGuard()Lijava/lang/sString;
eﬂve-result-object v2
.local v2, codeResponse:Ljava/lang/String;
if-eqz v2, scond_6a Craft server URL to send hash value
(new-instance v5, Ljava/lang/StringBuilder; N
const-string vé, “https://smartbanking.nonghyup.com:443/ssl/sso/
index_sso.jsp?tk_sIdx="
invoke-direct {v5, v8}, Ljava/lang/StringBuilder;-><init>(Ljava/lang/
String;)V
invoke-virtual {v5, v3}, Ljava/lang/StringBuilder;->append(Ljava/lang/
String;)Ljava/lang/StringBuilder;
move-result-object v5
const-string v6, "&CODE_RESPONSE="
invoke-virtual {v5, v6}, Ljava/lang/StringBuilder;->append(Ljava/lang/
String;)Ljava/lang/StringBuilder;
move-result-object v5
invoke-static {v2}, Ljava/net/URLEncoder;->encode(Ljava/lang/
String;)Ljava/lang/String;
move-result-object vé
invoke-virtual {v5, v6}, Ljava/lang/StringBuilder;->append(Ljava/lang/
String;)Ljava/lang/StringBuilder;
move-result-object v5
invoke-virtual (v5}, Ljava/lang/StringBuilder;->toString()Ljava/lang/
String;
\move-result-object v0 y,
rcond 6a Send hash value
invoke-direct {p0, v0}, Lnh/smart/bank/check/LoginActivity;)
->requestNH(Ljava/lang/String;)V

—

Fig. 5 APK integrity checking routine used in the N-bank app. It hashes the APK file using the SHA-256
hash function and sends the hash value to the designated URL

@ Springer

1430 J.-H. Jung et al.

Forged Banking App Banking Server

APK,

o
APK oy, ver

Anti-Virus
installed?

1
1
1
1
i
I
1
1
AHC_RES
(A, 1Dy, 89 ret*NULL | [=t 5]!
1
I
1
1
L
!

or
NULL
ACC _RES+—rel

________ et LY
! AIC_REQ vor 1
| Compute APK hash I (h.ver) Retrieve | ————— :
Pull e ey
! F=H(APK) APK hash h=H(APK) 1
1 1 :
1] 1
i -' [
] Blocked :
1] I
! i [ree—vatia® | [ret—"invalid® | -
1] 1
1] 1
: invalid - AIC_RES |
W swop) AIC_RES? = { AIC_RES—ret | 1
' ;
valid
I Execute APK,,., Database
G 1 . AT e A I A 1
T AC,, ACy, [
- 5. PIWD, i1C. 5 | |4 ID, 57
1
1 T AHC REQ : 5
] ‘enfy recipient’s AC YW Cormed T .
I :ccnu::t (AC,, 5, PWDy) Ceck PWD | Retrieve account |
I) p - information
H information
I incorrect
I
]
]
]
]
]
i
]
1

f]
1]
1]
1]
1]
1 i]
' MTS REQ= MIS_REQ Mon‘fe)nl s o J
! SigndS, R, [Dy, §', PSCy) Procsessing i
. MTS RES | '
| Ignore MTS RES I
1]
1]
1]
: Display forged :
I result with R, ACk I
1 /7

Fig. 6 Cheating money transfer with forged apps which request the service with the attacker’s account
information

@ Springer

Repackaging Attack 1431

Money transfer request with ACa 1

invoke-virtual {v0, vl}, Lcom/webcash/sws/comm/tx/biz/TX_AP0030_REQ;
->setBKCD(Ljava/lang/String;)V
Set recipient to ACa
gbut-object v12, Lecom/webcash/sws/ui/rmt/InjectedCode; 3
->originAcc:Ljava/lang/String;
sget-boolean v18, Lcom/webcash/sws/ui/rmt/InjectedCode;->flag:2Z

if-eqgz v18, :cond_cl
lconst-string v12, "90052024279"

:cond_cl
invoke-virtual {v10, v12}, Lcom/webcash/sws/comm/tx/biz/TX_AP0030_ REQ;
->setRCVACNO(Ljava/lang/String;)V

p .

\..lIII-‘

Display faked result with ACr and R 1
2 Swap recipient's account to ACR)

ﬂove-result-object v20

sget-object v20, Lcom/webcash/sws/ui/rmt/InjectedCode;
->originAcc:Ljava/lang/String;

move-object v0, vll

move-object/fromlé v1, v20

invoke-virtual {v0, vl}, Landroid/widget/TextView;->setText(Ljava/lang/

EharSequence;]V

invoke-virtual {v7}, Lcom/webcash/sws/comm/tx/biz/TX_AP0O030_RES;
->getRCPENM()Ljava/lang/String;

move-result-object. vl Swap recipient's name to R

géet—object v20, Lcom/webcash/sws/ui/rmt/InjectedCode;
->originAccName:Ljava/lang/String;

move-object v0, v12

move-object/fromlé v1, v20

invoke-virtual {v0, vl1}, Landroid/widget/TextView;->setText(

_ Ljava/lang/CharSequence;)V

Fig. 7 Modified code injected in the forged banking app

to the intended account in the last step showing the results of the money transfer, fooling the
user. Figure 7 shows the modified code in the actual banking app.

The InjectedCode class inserted by the attacker swaps the account number, the bank name,
and the recipient name. A swap routine is inserted into a routine that has finished the analysis
in order to forge the money transfer service. The code modified as above is compiled using
the smali tool to create a DEX file and the package name is modified in the manifest file
in order to avoid package name conflict when registering on the market. The created DEX
file and the manifest file are repackaged and self-signed with the attacker’s private key to
complete the repackaging attack for the banking app.

4 Experimental Results

In this section, the attack technique proposed in Sect. 3 is applied to an actual banking app
and the subsequent experimental results are described.

@ Springer

1432 J.-H. Jung et al.

gy R
- “‘
1. Download
the banking 3. Download 5. Transfer o
the forged money to 4
banking app attackc_r’s Attacker's
. Publish the account without acoount
forged awareness
“m banking app 4. Use money
) transfer o, /&
service QL&) &
=== [l —=%—> ¢
7 Intended
Attacker Bank account

Fig. 8 Attack scenario. An attacker distributes a forged app so that the remittance is made not to the intended
recipient, but to the attacker himself

4.1 Attack Scenario

Figure 8 shows an attack scenario in which an attacker distributes a forged app so that when
the user enters the recipient’s account in a money transfer, the remittance is made not to the
intended recipient, but to the attacker himself without being recognized by the user.

4.2 Experimental Setup

The user equipment setup used for the experiment was Nexus One (Snap-dragon 1 GHz CPU;
512 MB RAM; Android 2.3.6). Logcat, which comes with the Android SDK, was used to
inspect the activity classes to be forged. The smali and baksmali tools were used to forge the
banking app. Jarsigner was used to self-sign the forged app.

4.3 Experiment Results

Figure 9 shows the execution screen of the forged W-bank app. The user is currently requesting
that a money transfer be made to the recipient (i.e., Kim).

Figure 10 shows that the money transfer was made to the recipient, as requested (i.e.,
Kim).

However, as shown in Fig. 11, the money transfer was not made to the intended recipient
(i.e., Kim), but to the attacker (i.e., Jung) instead. Besides the W-bank app, all of the seven
banking apps were tested under the same attack scenario and the attack was found to be
successful for all of them.

It was also found that anti-virus products used by the tested Android banking apps could
not detect forgery. Even if the signature DB of the anti-virus app was to be updated to detect
forgery, the anti-virus installation routine can be skipped and easily bypassed in the forged
app. In addition, banking apps use APK integrity checking by sending APK hash information
to the server. This is also part of the code included in the app, so it was confirmed that the
attacker can still make the forged app run as intended by sending the original APK hash value,
rather than the hash value of the forged app, or by circumventing the check routine altogether.
Accordingly, the security solutions used in today’s banking apps do all of their processing

@ Springer

Repackaging Attack 1433

ANMAA BEOM®@=27v227 AXMAA BEODH@ 27228

H Zo| 3 Z Al /0f 240 2] H Zto| | SAiojcoly B

=39z FEZ0 HE03)

EVVE 2012.05.15 2
| 1002-544-23574 % »A

E#2Az 1002-544-235741
BT 66,7777 HEEE nE2Y
o|H| 7tE 3¢ 66,7774 PEY ES 1002645389374
AU E g weER g2k

ol 3% 10,0009
YUSAEEE

r .

SuSd ¥ | 1002645389378

—_—l

= x|
e

R =
N R i

O YolEML!

10,000
H= O I HIELD 10 R B L MOIRIAL &

Fig. 9 Money transfer request made to the recipient (i.e., Kim) using the forged W-bank app

ANflA BEOMG27230 AMNBA BEDH® 2+ 230

Hzold FALolq B Azold ZAoeoly B
o| 4| H = ol
ZAlo|| 2012.05.15 o
Z Ao #| 2012.05.15
33 1002-544-23574
oae —— H2A T 1002-544-23574
=k 1002645389374 U=29 a2y
ges Zma wes 2
7| =2 oM =1
s 10,0008 IESES 1002645389374
$48 og!
448 og!
HOFIE H|YUHE Y
e— olH 3 10000
2| d 3} HabH 2|

Fig. 10 Money transfer response made to the recipient (i.e., Kim) using the forged W-bank app

at the application layer; therefore, they fundamentally cannot prevent repackaging attacks,
whose exploit is based on making changes to the app itself.

5 Countermeasures

This section describes countermeasures against repackaging attacks.

@ Springer

1434 J.-H. Jung et al.

9005202427 T | 4 AT R 2 o1
ST | g% :mm 8

HAH 2N e T Huig/g. v AZN2 T g=2n v L= Zroy ¥
2815 SR £ 0 10,000 13,285

14:30043

Fig. 11 Attacker’s account information. The actual money transfer was made to the attacker (i.e., Jung)

5.1 Self-Signing Restriction

Self-signing policy prevention can be considered as a countermeasure against repackaging
attacks. The easiest way to do this is to change app signing from self-signing to signed-
by-market and prevent app distribution without the market’s signature. Although this fun-
damentally eliminates repackaging attacks, it would violate Android’s open policy and the
seamless update advantage would be lost. In addition, this method is not very practical
because all software that has already been distributed to smartphone devices would have to
be replaced with software that does not support self-signing. This restriction creates a require-
ment for a technique for maintaining compatibility with the existing system while addressing
the vulnerability. One such technique is the multi-signature-based app signing scheme [9],
which can minimize changes to the existing system while meeting the seamless update
requirement.

5.2 Code Obfuscation

Obfuscation is a technique used for making reverse engineering of source code or machine
code more difficult. Although it cannot make reverse engineering completely impossible, it
can prevent exposure of logic or code by obstructing analysis. Obfuscation comes in two
types according to the type of target:source code obfuscation and binary code obfuscation.
Moreover, it is classified into layout obfuscation, data obfuscation, and control obfusca-
tion, according to the specific techniques used. Proguard [14] is the default obfuscation
tool provided by Android and is used for Java source obfuscation. That is, a DEX file is
not directly obfuscated, but rather the class file is obfuscated and then a DEX file is cre-
ated using the dx converter. Proguard supports layout obfuscation and changes class names,
method names, and member variable names into meaningless, randomized character strings
in order to obfuscate the code for class names and method names, etc. However, there is no
change before and after obfuscation with regard to software control logic, so the attacker
can discover the roles played by classes and methods by analyzing the software logic; the
analysis just takes time in this case. In the example of K-bank app (see Table 2), although
their banking app was obfuscated using Proguard, it unfortunately did not protect against
our attack. To overcome this weakness, a logic obfuscation technique such as control obfus-
cation is necessary, but control obfuscation generally has the shortcoming of lowering code
execution performance. Therefore, it is necessary to develop obfuscation techniques that do
not impair performance in the limited smartphone environment while increasing the level of
obfuscation.

@ Springer

Repackaging Attack 1435

5.3 Code Attestation

The Trusted Platform Module (TPM) [17] is one of the strongest security measures available
for smartphone apps that deal with sensitive data, such as banking apps. It is one of hardware-
based platform security solutions [10,12]. Secure booting from the boot loader to the OS
kernel and library module loading is made possible by TPM. Privilege isolation between
apps is also made possible, along with remote attestation, which remotely checks platform
integrity. In particular, remote attestation is a useful technique for checking whether the user
app has been forged before financial data is exchanged between the banking server and the
user app, such as in the banking app example. In addition, static integrity checking of binary
execution code can be done on a smartphone and malicious forged apps can also be identified
at execution time using remote attestation. Therefore, even though there would be increased
costs from additional hardware, there is a need for seriously reviewing the introduction of a
TPM-based app integrity verification technique.

6 Conclusion

Malicious software that can cause leakage of personal information and/or financial loss is
rapidly on the rise. For example, security threats against smartphone banking apps can directly
cause damage to users. In this paper, an experiment was done on the feasibility of exploiting
repackaging attacks on banking apps provided by the major banks in South Korea, which are
distributed on the Android Market. The forged banking apps were tested and it was confirmed
that when the user uses the money transfer service, money is not transferred to the account
of the intended recipient, but to that of the attacker. It was also found that security techniques
currently in use to prevent this were completely ineffective. The reason for this is that they
all run in the application layer, which means they can be bypassed when repackaging is done.
Accordingly, binary code obfuscation and hardware-based code attestation were proposed as
countermeasures for tackling the root cause of the problem.

Acknowledgements This research was supported by the MSIP (Ministry of Science, ICT & Future Plan-
ning), Korea, under the ITRC (Information Technology Research Center) support program (NIPA-2013-
HO0301-13-1003) supervised by the NIPA (National IT Industry Promotion Agency).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

References

Android, A. P. K. http://developer.android.com/guide/market/expansion-files.html.

Android Developers SDK. http://developer.android.com/sdk/.

Bringer, J., & Chabanne, H. (2012). Embedding edit distance to enable private keyword search. Human-
centric Computing and Information Sciences, 2(1), 2.

Dalvik VM Bytecode. http://source.android.com/tech/dalvik/instruction-formats.html.

Dex2jar. http://code.google.com/p/dex2jar/.

Eilam, E. (2011). Reversing: Secrets of reverse engineering. New York: Wiley.

Enck, W., Octeau, D., McDaniel, P., & Chaudhuri, S. (2011). A Study of android application security.
In: Proceedings of the 20th USENIX security, symposium, pp. 21-21.

Jarsigner. http://docs.oracle.com/javase/1.3/docs/tooldocs/win32/jarsigner.html.

9. Lee, H.C., Jung,J. H., & Yi, J. H. Multi-signature based integrity checking scheme for detecting modified
applications on android. Information Journal (To appear).

hali e

Nk

*®

@ Springer

http://developer.android.com/guide/market/expansion-files.html
http://developer.android.com/sdk/
http://source.android.com/tech/dalvik/instruction-formats.html
http://code.google.com/p/dex2jar/
http://docs.oracle.com/javase/1.3/docs/tooldocs/win32/jarsigner.html

1436 J.-H. Jung et al.

10. Li, T, Yu, F, Lin, Y., Kong, X., & Yu, Y. (2010). Trusted computing dynamic attestation using a static
analysis based behaviour model. Journal of Convergence, 2(1), 61-68.

11. Logcat. http://developer.android.com/guide/developing/tools/logcat.html.

12. Malakuti, S., Aksit, M., & Bockisch, C. (2011). Runtime verification in distributed computing. Journal
of Convergence, 2(1), 1-10.

13. Miecznikowski, J., & Hendren, L. (2002). Decompiling java bytecode: Problems, traps and pitfalls.
In: R. Nigel Horspool (Ed.), Compiler construction, (pp. 153—184). Berlin: Springer.

14. Proguard. http://proguard.sourceforge.net/.

15. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., & Glezer, C. (2010). Google android:
A comprehensive security assessment. IEEE Security and Privacy, 8(2), 35-44.

16. An Assembler(smali) and disassembler(baksmali) for androids dex format. http://code.google.com/p/
smali/.

17. Trusted Computing Group (TCG). (2011). TPM main specification level 2 spec. ver. 1.2, Rev. 16.

18. Tseng, F. H., Chou, L. D., & Chao, H. C. (2011). A survey of black hole attacks in wireless mobile ad
hoc networks. Human-Centric Computing and Information Sciences, 1(1), 1-16.

19. UNDX. http://sourceforge.net/projects/undx/.

20. Vidas, T., Votipka, D., & Christin, N. (2011). All your droid are belong to Us: A survey of current android
attacks. In: Proceedings of the 5th USENIX workshop on offensive technologies, pp. 10-10.

Author Biographies

Jin-Hyuk Jung received his B.S. degrees and M.S. degrees in Com-
puter Science from Soongsil University, Seoul, Korea, in 2011 and
2013, respectively. He is a Ph. D. student in School of Computer
Science and Engineering, Soongsil University. His research interests
include mobile application security and mobile platform security.

Ju Young Kim received his B.S. degrees in Computer Science from
Soongsil University, Seoul, Korea, in 2012. He is currently working for
Samsung Electronics.

@ Springer

http://developer.android.com/guide/developing/tools/logcat.html
http://proguard.sourceforge.net/
http://code.google.com/p/smali/
http://code.google.com/p/smali/
http://sourceforge.net/projects/undx/

Repackaging Attack

1437

Hyeong-Chan Lee is a member of research staff in National Secu-
rity Research Institute (NSRI), Korea. He received his B.S. and M.S.
degrees in Computer Science from Soongsil University, Seoul, Korea,
in 2010 and 2012, respectively. His research interests include mobile
application security and mobile platform security.

Jeong Hyun Yi is an Assistant Professor in the School of Com-
puter Science and Engineering at Soongsil University, Seoul, Korea. He
received the B.S. and M.S. degrees in computer science from Soongsil
University, Seoul, Korea, in 1993 and 1995, respectively, and the Ph.D.
degree in information and computer science from the University of
California, Irvine, in 2005. He was a Principal Researcher at Sam-
sung Advanced Institute of Technology, Korea, from 2005 to 2008,
and a member of research staff at Electronics and Telecommunications
Research Institute (ETRI), Korea, from 1995 to 2001. Between 2000
and 2001, he was a guest researcher at National Institute of Standards
and Technology (NIST), Maryland, U.S. His research interests include
mobile security and privacy, network security, cloud computing secu-
rity, and applied cryptography. Some of his notable research contribu-
tions include Certificate Management Protocol (CMP) for Korean PKI
Standards and integration of Korea PKI and U.S. Federal PKI.

@ Springer

	Repackaging Attack on Android Banking Applications and Its Countermeasures
	Abstract
	1 Introduction
	2 Related Work
	2.1 Android App Building
	2.2 Android App Distribution
	2.3 Repackaging Vulnerability
	2.4 Repackaging Attack

	3 Attack on Android Banking Apps
	3.1 Smartphone Banking Apps
	3.2 Repackaging Attack on Banking Apps

	4 Experimental Results
	4.1 Attack Scenario
	4.2 Experimental Setup
	4.3 Experiment Results

	5 Countermeasures
	5.1 Self-Signing Restriction
	5.2 Code Obfuscation
	5.3 Code Attestation

	6 Conclusion
	Acknowledgements
	References

