Skip to main content
Log in

Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the present investigation, five novel Cr(VI) reducing bacteria were isolated from tannery effluents and solid wastes and identified as Kosakonia cowanii MKPF2, Klebsiella pneumonia MKPF5, Acinetobacter gerneri MKPF7, Klebsiella variicola MKPF8 and Serratia marcescens MKPF12 by 16S rDNA gene sequence analysis. The maximum tolerance concentration of Cr(VI) as K2Cr2O7 of the bacterial isolates was varying up to 2000 mg/L. Among the investigated bacterial isolates, A. gerneri MKPF7 was best in terms of reduction rate. The optimum temperatures for growth and Cr(VI) reduction by the bacterial isolates were 35 and 40 °C, respectively except A. gerneri MKPF7 which grew and reduced Cr(VI) optimally at 40 °C. The optimum pH for growth and Cr(VI) reduction by K. cowanii MKPF2, A. gerneri MKPF7 and S. marcescens MKPF12 was 7.0 whereas the optimum pH for growth and Cr(VI) reduction by K. pneumoniae MKPF5 and K. variicola MKPF8 were 7.0, 8.0 and 6.0, 7.0, respectively. All the bacterial isolates showed maximum tolerance against Ni2+ and Zn2+ whereas minimum tolerance was observed against Hg2+ and Cd2+. The bacteria isolated in the present study thus can be used as eco-friendly biological expedients for the remediation and detoxification of Cr(VI) from the contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A (2004) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ansari MI, Grohmann E, Malik A (2008) Conjugative plasmids in multi-resistant bacterial isolates from Indian soil. J Appl Microbiol 104:1774–1781

    Article  PubMed  CAS  Google Scholar 

  • Aquilla RTD, Bechtel LJ, Videler JA, Eron JJ, Gorczyca P, Kaplan JC (1991) Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Res 19:3749

    Article  Google Scholar 

  • Basu M, Bhattacharya S, Paul AK (1997) Isolation and characterization of chromium-resistant bacteria from tannery effluents. Bull Environ Contam Toxicol 58:535–542

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt A, Gysi N (2013) The world’s worst 2013: the top ten toxic threats; clean up, progress and ongoing challenges. New York, Zurich. p. 17

  • Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr(VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Pollut Res 20:6628–6638

    Article  CAS  Google Scholar 

  • Bru D, Martin-Laurent F, Philippot L (2008) Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S r RNA gene as an example. Appl Environ Microbiol 74:1660–1663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calomoris JJ, Armstrong TL, Seidler RJ (1984) Association of metal-tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Appl Environ Microbiol 47:1238–1242

    Google Scholar 

  • Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2003) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Campos VL, Moraga R, Yanez J, Zaror CA, Mondaca MA (2005) Chromate reduction in Serratia marcescens isolated from tannery effluent. Bull Environ Contam Toxicol 75:400–406

    Article  PubMed  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres Guzman JC, Moreno-Sanchez R (2001) Interaction of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  PubMed  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Costa M (1997) Toxicology and carcinogenicity of Cr(VI) in animal models and humans. Crit Rev Toxicol 27:431–442

    Article  PubMed  CAS  Google Scholar 

  • DeFlora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds: a review. Mutat Res 238:99–172

    Article  CAS  Google Scholar 

  • Degiam ZD, Abd-Al adheem H, Abbas FN (2011) Influence of some weak acids, weak bases and salts against some pathogenic microorganisms. Thi-Qar Med J 5:93–99

    Google Scholar 

  • Dinakarpandian D, Morrissette V, Chaudhary S, Amini K, Bennett B, Horn JDV (2004) An informatics search for the low molecular weight chromium binding peptide. BMC Chem Biol 4:1–7

    Article  CAS  Google Scholar 

  • Eden PA, Schmidt TM, Blakemore RP, Pace NR (1991) Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 41:324–325

    Article  PubMed  CAS  Google Scholar 

  • Eisenstadt E, Carlton BC, Brown BJ (1994) Gene mutation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 297–316

    Google Scholar 

  • Essahale A, Malki M, Marin I, Moumni M (2012) Hexavalent chromium reduction and accumulation by Acinetobacter AB1 isolated from Fez tanneries in Morocco. Indian J Microbiol 52:48–53

    Article  PubMed  CAS  Google Scholar 

  • Fulladosa E, Desjardin V, Murat JC, Gourdon R, Villaescusa I (2006) Cr(VI) reduction into Cr(III) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere 65:644–650

    Article  PubMed  CAS  Google Scholar 

  • Garg SK, Tripathi M, Srinath T (2012) Strategies for chromium bioremediation of tannery effluent. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, Berlin, p 217

    Google Scholar 

  • Ge S, Zhou M, Dong Z, Lu Y, Ge S (2013) Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation. Appl Microbiol Biotechnol 97:2131–2137

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez PS, Ambrosio LF, Paisio CE, Talano MA, Medina MI, Agostini E (2014) Chromium(VI) remediation by a native strain: effect of environmental conditions and removal mechanisms involved. Environ Sci Pollut Res 21:13551–13559

    Article  CAS  Google Scholar 

  • Hora A, Shetty KV (2014) Inhibitory and stimulating effect of single and multi-metal ions on hexavalent chromium reduction by Acinetobacter sp. Cr-B2. World J Microbiol Biotechnol 30:3211–3219

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim ASS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA (2011) Isolation and characterization of novel potent Cr(VI) reducing alkaliphilic Amphibacillus sp. KSUCr3 from hypersaline soda lakes. Electron J Biotechnol 14:1–15

    Google Scholar 

  • Ilias M, Rafiqullah IM, Debnath BC, Mannan KS, MozammelHoq M (2011) Isolation and characterization of chromium(VI) reducing bacteria from tannery effluents. Indian J Microbiol 51:76–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishibashi Y, Cerventes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 6:2268–2270

    Google Scholar 

  • Kavita B, Keharia H (2012) Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech 2:79–87

    Article  PubMed  CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  PubMed  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Removal of Cu from ferruginous wastewater by algal biomass. Water Res 32:2760–2768

    Article  CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Li X, Gao H (2006) Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986

    Article  CAS  Google Scholar 

  • Maksin DD, Nastasovic AB, Milutinovic-Nikoloc AD, Surucic LT, Sandic ZP, Hercigonja RV, Onjia AE (2012) Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylenetriamine grafted glycidyl methacrylate based copolymers. J Hazard Mater 209–210:99–110

    Article  PubMed  CAS  Google Scholar 

  • Masood F, Malik A (2011) Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Bull Environ Contam Toxicol 86:114–119

    Article  PubMed  CAS  Google Scholar 

  • McLean SJ, Beveridge TJ, Phipps D (2000) Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environ Microbiol 2:611–619

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    Article  PubMed  CAS  Google Scholar 

  • Mondaca MA, Campos V, Moraga R, Zaror CA (2002) Chromate reduction in Serratia marcescens isolated from tannery effluent and potential application for bioremediation of chromate pollution. Sci World J 2:272–277

    Article  CAS  Google Scholar 

  • Nishioka H (1975) Mutagenic activity of metal compounds in bacteria. Mutat Res 31:185–189

    Article  PubMed  CAS  Google Scholar 

  • Nragu JO, Nieboer E (1988) Chromium in the natural and human environments. Wiley, New York

    Google Scholar 

  • Ohtake H, Fujii E, Toda K (1990) A survey of effective electron donors for reduction of toxic hexavalent chromium by Enterobacter cloacae (strain HO1). J Gen Appl Microbiol 36:203–208

    Article  CAS  Google Scholar 

  • Opperman DJ, Piater LA, Heerden EV (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 8:3076–3082

    Article  CAS  Google Scholar 

  • Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    PubMed  PubMed Central  CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 51:327–330

    Article  PubMed  CAS  Google Scholar 

  • Panda J, Sarkar P (2012) Bioremediation of chromium by novel strains Enterobacter aerogenes T2 and Acinetobacter sp. PD 12 S2. Environ Sci Pollut Res 19:1809–1817

    Article  CAS  Google Scholar 

  • Ramesh C, Kumar KM, Senthil M, Ragunathan V (2012) Antibacterial activity of Cr2O3 nanoparticles against E. coli; reduction of chromate ions by Arachishypogaea leaves. Arch Appl Sci Res 4:1894–1900

    CAS  Google Scholar 

  • Rehman F, Faisal M (2015) Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium. Chin J Oceanol Limnol 33:585–589

    Article  CAS  Google Scholar 

  • Rengaraj S, Yeon K, Moon SH (2007) Removal of chromium from water and wastewater by ion exchange resins. J Hazard Mater 87:273–287

    Article  Google Scholar 

  • Shakoori AR, Makhdoom M, Huq RU (2000) Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biotechnol 53:348–351

    Article  PubMed  CAS  Google Scholar 

  • Shams KM, Tichy G, Sager M, Peer T, Bashar A, Jozic M (2009) Soil contamination from tannery wastes with emphasis on the fate and distribution of tri- and hexavalent chromium. Water Air Soil Pollut 199:123–137

    Article  CAS  Google Scholar 

  • Shi Y, Chai L, Yang Z, Jing Q, Chen R, Chen Y (2012) Identification and hexavalent chromium reduction characteristics of Pannonibacte rphragmitetus. Bioprocess Biosyst Eng 35:843–850

    Article  PubMed  CAS  Google Scholar 

  • Singh VK, Singh KP, Mohan D (2005) Status of heavy metals in water and bed sediments of river Gomti—a tributary of Ganga river, India. Enviorn Monit Assess 105:43–67

    Article  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2001) Cr(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  Google Scholar 

  • Srivastava S, Thakur IS (2007) Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18:637–646

    Article  PubMed  CAS  Google Scholar 

  • Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV (2005) Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol 39:3671–3678

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Yutaka Tai Y, Okazaki M (1992) NADPH-dependent chromium(VI) reductase of Pseudomonas ambiga G-1.: a Cr(V) intermediate formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thacker U, Madamwar D (2005) Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J Microbiol Biotechnol 21:891–899

    Article  CAS  Google Scholar 

  • Viti C, Pace A, Giovanetti L (2003) Characterization of Cr(VI) resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wani PA, Omozele AB (2015) Cr(VI) removal by indigenous Klebsiella species PB6 isolated from contaminated soil under the influence of various factors. Curr Res Bacteriol 8:62–69

    Article  CAS  Google Scholar 

  • Xu L, Luo M, Li W, Wei X, Xie K, Liu L, Jiang C, Liu H (2012) In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl Biochem Biotechnol 166:933–941

    Article  PubMed  CAS  Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21:814–820

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Naieum Muhammad Fakhruddin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

The manuscript does not contain clinical studies or patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.M., Fakhruddin, A.N.M., Chowdhury, M.A.Z. et al. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes. World J Microbiol Biotechnol 34, 126 (2018). https://doi.org/10.1007/s11274-018-2510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2510-z

Keywords

Navigation