Skip to main content
Log in

Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chemical reagents that are used for synthesis of nanoparticles are often toxic, while biological reagents are safer and cost-effective. Here, the behavior of Staphylococcus epidermidis (ATCC 12228) was evaluated for biosynthesis of silver nanoparticles (Ag-NPs) and cadmium sulfide nanoparticles (CdS-NPs) using TEM images intra- and extracellularly. The bacteria only biosynthesized the nanoparticles intracellularly and distributed Ag-NPs throughout the cytoplasm and on outside surface of cell walls, while CdS-NPs only formed in cytoplasm near the cell wall. A new method for purification of the nanoparticles was used. TEM images of pure CdS-NPs confirmed biosynthesis of agglomerated nanoparticles. Biosynthetic Ag-NPs were more stable against bright light and aggregation reaction than synthetic Ag-NPs (prepared chemically) also biosynthetic Ag-NPs displayed lower toxicity in in vitro assays. CdS-NPs indicated no toxicity in in vitro assays. Biosynthetic nanoparticles as product of the detoxification pathway may be safer and more stable for biosensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28(4):313–318

    Article  CAS  Google Scholar 

  • Anil Kumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Ataei ML, Ebrahimzadeh Bideskan AR (2014) The effects of nano-silver and garlic administration during pregnancy on neuron apoptosis in rat offspring hippocampus. Iran J Basic Med Sci 17(6):411–418

    Google Scholar 

  • Atashbeyk DG, Khameneh B, Tafaghodi M, Fazly Bazzaz BS (2014) Eradication of methicillin-resistant Staphylococcus aureus infection by nanoliposomes loaded with gentamicin and oleic acid. Pharm Biol 52:1423–1428

    Article  CAS  Google Scholar 

  • Bagheri Abassi F, Alavi H, Mohammadipour A, Motejaded F (2015) The effect of silver nanoparticles on apoptosis and dark neuron production in rat hippocampus. Iran J Basic Med Sci 18(7):644–648

    Google Scholar 

  • Banyay M, Sarkar M, Graslund A (2003) A library of IR bands of nucleic acids in solution. Biophys Chem 104(2):477–488

    Article  CAS  Google Scholar 

  • Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767(9):1073–1101

    Article  CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179

    Article  CAS  Google Scholar 

  • Bryant KA (2008) Investigation of the Staphylococcus epidermidis macromolecular synthesis operon. University of Nebraska Medical Center, Omaha, p 151

    Google Scholar 

  • Casal HL, Mantsch HH (1984) Polymorphic phase behavior of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta 779(4):381–401

    Article  CAS  Google Scholar 

  • Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  CAS  Google Scholar 

  • Cunningham DP, Lundie LL Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59(1):7–14

    CAS  Google Scholar 

  • Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  • Deepak V, Kalishwaralal K, Kumar Pandian SR, Gurunathan S (2011) An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, New York, p 17

    Chapter  Google Scholar 

  • Doty RS, Tshikhudo TR, Brust M, Fernig DG (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17(18):4630–4635

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, DeSouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8

    Article  Google Scholar 

  • El-Shanshoury AR, ElSilk SE, Ebeid ME (2011) Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnol 2011:1–7

    Article  Google Scholar 

  • Entenman C (1957) General procedures for separating lipid components of tissue. Method Enzymol 3:299–317

    Article  Google Scholar 

  • Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4(4):303–317

    Article  CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Article  Google Scholar 

  • Gaurav K, Karthik L, Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta Part A 90:78–84

    Article  Google Scholar 

  • Glomm RW (2005) Functionalized gold nanoparticles for applications in bionanotechnology. J Dispers Sci Technol 26:389–414

    Article  CAS  Google Scholar 

  • Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(9):2881–2885

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Henglein A (1989) Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  • Huang T, Nancy-Xu XH (2010) Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem 20:9867–9876

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Jain V, Jain P (2011) Biomolecules–nanoparticles: interaction in nanoscale. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, New York, p 135

    Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-termmultiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  CAS  Google Scholar 

  • Jayaseelan C, Abdul Rahuman A, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Kacurakova M, Mathlouthi M (1996) FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydr Res 284(2):145–157

    Article  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y (2007a) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    Article  CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007b) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192

    Article  CAS  Google Scholar 

  • Kowshik M, Ashataputre S, Kharrazi S, Kulkarni SK, Paknikari KM, Vogel W, Urban J (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Lee KJ, Jun BH, Choi J, Lee YI, Joung J, Oh YS (2007) Environmentally friendly synthesis of organic soluble silver nanoparticles for printed electronics. Nanotechnology 18(33):335601–335605

    Article  Google Scholar 

  • Lengke MF, Southam G (2005) The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochim Cosmochim Acta 69(15):3759–3772

    Article  CAS  Google Scholar 

  • Lengke MF, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochim Cosmochim Acta 70:3646–3661

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22(6):2780–2787

    Article  CAS  Google Scholar 

  • Lengke MF, Sanpawanitchakit C, Southam G (2011) Biosynthesis of gold nanoparticles: a review. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, New York, p 37

    Chapter  Google Scholar 

  • Levinson W (2010) Review of medical microbiology and immunology, 11th edn. McGraw-Hill, New York, p 94

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103

    Article  CAS  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  • Nag A, Sapra S, Sengupta S, Prakash A, Ghangrekar A, Periasamy ND, Sarma D (2008) Luminescence in Mn-doped CdS nanocrystals. Bull Mater Sci 31:561–568

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298

    Article  CAS  Google Scholar 

  • Nam JM, Thaxton CS, Mirkin CA, Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886

    Article  CAS  Google Scholar 

  • Oelshlegel FJ, Schroeder JR, Stahmann MA (1970) A simple procedure for basic hydrolysis of proteins and rapid determination of tryptophan using a starch column. Anal Biochem 34(2):331–337

    Article  CAS  Google Scholar 

  • Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV–visible light spectrum. Analyst 139(19):4855–4861

    Article  CAS  Google Scholar 

  • Pecora R (1985) Dynamic light scattering: applications of photon correlation spectroscopy. Plenum Press, New York, p 35

    Book  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284

    Article  CAS  Google Scholar 

  • Sabyasachi P, Ashok KP, Debasis S, Ramagiri SV, Bellare JR, Mazumder S (2014) Redox decomposition of silver citrate complex in nanoscale confinement: an unusual mechanism of formation and growth of silver nanoparticles. Langmuir 30(9):2460–2469

    Article  Google Scholar 

  • Sastry M, Mayya KS, Bandyopadhyay K (1997) pH dependent changes in the optical properties of carboxylic acid reprivatized silver colloidal particles. Colloids Surf A 127:221–228

    Article  CAS  Google Scholar 

  • Schmid G (1992) Large clusters and colloids: metals in the embryonic state. Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  • Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97:996–1001

    Article  CAS  Google Scholar 

  • Sondi I, Salopek Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  Google Scholar 

  • Southam G, Beveridge TJ (1994) The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58(20):4527–4530

    Article  CAS  Google Scholar 

  • Williams P, Keshavarz-Moore E, Dunnill P (1996) Production of cadmium sulphide microcrystallites in batch cultivation by Schizosaccharomyces pombe. J Biotechnol 48:259–267

    Article  CAS  Google Scholar 

  • Wong PT, Wong RK, Caputo TA, Godwin TA, Rigas B (1991) Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis. Proc Natl Acad Sci USA 88(24):10988–10992

    Article  CAS  Google Scholar 

  • Yang C, Zhou X, Wang L, Tian X, Wang Y, Pi Z (2009) Preparation and tunable photoluminescence of alloyed CdSxSe1-x nanorods. J Mater Sci 44:3015–3019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported financially (No. 931498) by the Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibi Sedigheh Fazly Bazzaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezvani Amin, Z., Khashyarmanesh, Z. & Fazly Bazzaz, B.S. Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles. World J Microbiol Biotechnol 32, 140 (2016). https://doi.org/10.1007/s11274-016-2110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2110-8

Keywords

Navigation