Skip to main content

Advertisement

Log in

Assessment of functional and genetic diversity of aerobic endospore forming Bacilli from rhizospheric soil of Phyllanthus amarus L.

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fifty two aerobic and endospore forming Bacilli (AEFB) strains were recovered from rhizospheric soil of Phyllanthus amarus. Morphological, biochemical and molecular characterization by 16S rDNA gene sequencing has shown that these bacterial strains belong to six different genera of AEFB i.e. Bacillus, Brevibacillus, Lysinibacillus, Paenibacillus, Terribacillus and Jeotgalibacillus. Analysis of their PGP activities has shown that 92.30 % strains produced indole acetic acid hormone, 86.53 % of the strains solubilized Phosphate and 44.23 % strains produced siderophore. Chitinase production activity was shown by 42.30 % of the strains and 21.15 % of the strains produced 1-amino cyclopropane-1-carboxylate (ACC) deaminase. 46.15 % of isolates have shown antagonistic activity against common fungal pathogen of the plant i.e. Corynespora cassiicola. Among all of the isolated strains B. Cereus JP44SK22 and JP44SK42 have shown all of the six plant growth promoting traits tested. B. megaterium strains (JP44SK18 and JP44SK35), Lysinibacillus sphaericus strains (JP44SK3 and JP44SK4) and Brevibacillus laterosporus strain JP44SK51 have also shown multiple PGP activities except ACC deaminase production activity. In the present study bacterial strain belonging to genera Jeotgalibacillus sp. JP44SK37 has been reported first time as a member of rhizospheric soil habitat and has also shown PGP activities. It can be concluded that Rhizosphere of P. amarus has harboured a good diversity of AEFB bacterial strains having a lot of biofertilizing and biocontrol abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul S, Mansoor A, Abdul K, Singh P, Suman K, Alok K, Abdul S, Kumar SA, Darokar MP, Shukla AK, Padmapriya T, Yaseen M, Dhawan PO, Zaim M, Nair V, Poovappallivadakethil AK (2007) Novel Strain of Bacillus as a Bioinoculant. United States Patent Application 20070092491

  • Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007) Proposal of Lysinibacillus boronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125

    Article  CAS  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 2:39–45

    Article  Google Scholar 

  • An SY, Asahara M, Goto K, Kasai H, Yokota A (2007) Terribacillus saccharophilus gen. nov., sp. nov. and Terribacillus halophilus sp. nov., spore-forming bacteria isolated from field soil in Japan. Int J Syst Evol Microbiol 57:51–55

    Article  CAS  Google Scholar 

  • Ash C, Farrow AE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit- ribosomal RNA sequences. Lett Appl Microbiol 13:202–206

    Article  CAS  Google Scholar 

  • Ash C, Priest FG, Collins D (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanksand Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260

    Article  CAS  Google Scholar 

  • Beneduzi A, Passaglia LMP (2011) Genetic and phenotypic diversity of plant growth promoting bacilli. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer-Verlag, Heidelberg, pp 1–20

    Chapter  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Cakmakcl R, Erat M, Erdogan U, Donmez MF (2007) The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Article  Google Scholar 

  • Cakmakcl R, Donmez MF, Erturk Y, Erat M, Haznedar A, Sekban R (2010) Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant Soil 332:299–318

    Article  Google Scholar 

  • Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46(3):186–195

    Article  CAS  Google Scholar 

  • Fortina MG, Pukall R, Schumann P, Mora D, Parini C, Manchini P, Stackebrandt E (2001) Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphericus (Anderson et al. 1995) emendation of Ureibacillus thermosphericus and description of Ureibacillus terrreneus sp. nov. Int J Syst Evol Microbiol 51:447–455

    Article  CAS  Google Scholar 

  • Frankenberger WT, Arshad M (1995) Phytohormones in soils-microbial production and function. Marcel Dekker, New York

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Penrose D, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Glickmann F, Dessaux Y (1995) A critical examination of the specificity of the salkowski Reagent for indolic compounds produced by phytopatho- genic bacteria. Appl Environ Microbiol 61(2):793–796

    CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195

    Article  CAS  Google Scholar 

  • Govindasamy V, Kumar MS, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer-Verlag, Heidelberg, pp 333–364

    Chapter  Google Scholar 

  • Gutierrez MFJ, Ramos B, Lucas GJA, Probanza A, Barrientos ML (2002) Systemic induction of terpenic compounds in D. lanata. J Plant Physiol 160:105–113

    Google Scholar 

  • Hariprasad P, Niranjana SR (2009) Isolation and characterization of phosphate solubilising rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    Article  CAS  Google Scholar 

  • Heyndrickx M, Lebbe L, Kersters K, Devos P, Forsyth G, Logan NA (1998) Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48:99–106

    Article  Google Scholar 

  • Jha CK, Patel D, Rajendran N, Saraf M (2010) Combinatorial assessment on dominance and informative diversity of PGPR from rhizosphere of Jatropha curcas L. J Basic Microbiol 50:211–217

    Article  Google Scholar 

  • Kavroulakis N, Ntougias S, Besi MI, Damaskinou AKP, Ehaliotis C, Zervakis GI, Papadopoulou KK (2010) Antagonistic bacteria of composted agro-industrial residues exhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants from Fusarium oxysporum f.sp. radicis-lycopersici. Plant Soil 333:233–247

    Article  CAS  Google Scholar 

  • Khan M, Patel CB (2007) Plant growth promoting effect of Bacillus firmus strain NARS1 isolated from Central Himalayan region of India on Cicer arietinum at low temperature. Egypt Afr Crop Sci Soc 8:1179–1181 (In: African Crop Science Conference Proceedings Printed in El-Minia)

  • King JE (1936) The colorimetric determination of phosphorus. Biochem J 26(2):292–297

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Angers (ed) Proceedings of the Fourth International Conference on Plant Pathogenic Bacteria. Gilbert-Clarey, Tours, pp 879–882

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer-Verlag, Berlin Heidelberg, pp 37–59

    Chapter  Google Scholar 

  • Kumar P, Khare S, Dubey RC (2012) Diversity of bacilli from disease suppressive soil and their role in plant growth promotion and yield enhancement. N Y Sci J 5(1):90–111

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Lucas Garcia JA, Probanza A, Ramos B, Gutierrez Manero FJ (2001) Genetic variability of rhizobacteria from wild populations of four Lupinus species based on PCR- RAPDs. J Plant Nutr Soil Sci 164:1–7

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. John Wiley & Sons, Chichester

    Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Mathiyazhagana S, Kavithaa K, Nakkeerana S, Radjacommarea R, Sendhilvela V, Chandrasekara G, Fernando WGD (2004) Biological control of Phyllanthus amarus stem blight (Corynespora cassiicola) by plant growth promoting Rhizobacteria. Arch Phytopathol Plant Prot 37(3):183–199

    Article  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB et al (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov. sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius, Bacillus thermodenitrificans to Geobacillus as Geobacillus stearothermophilus, Geobacillus thermocatenulatus, Geobacillus thermoleovorans, Geobacillus kaustophilus, Geobacillus thermoglucosidasius, Geobacillus thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    CAS  Google Scholar 

  • Niimura Y, Koh E, Yanagida F, Suzuki KI, Komagata K, Kozaki M (1990) Amphibacillus xylanus gen. nov., a facultatively anaerobic spore foming xylin-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301

    Article  CAS  Google Scholar 

  • Oudhia P (2008) Phyllanthus amarus Schumach & Thonn. In: Schmelzer GH, Gurib-Fakim A (eds) Plant resources of tropical Africa 11(1). Medicinal Plants 1. PROTA Foundation, Wageningen, Netherlands/Backhuys Publishers, Leiden, Netherlands/CTA, Wageningen, Netherlands, pp 415–419

  • Penrose DM, Glick B (2002) Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol Plant 118:10–15

    Article  Google Scholar 

  • Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40:524–532

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilisation and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Volker H, Thomm M (2001) Filobacillus milensis gen. nov., a new halophilic spore-forming bacterium with Ornd- Glu-type peptidoglycan. Int J Syst Microbiol 51:425–431

    CAS  Google Scholar 

  • Schwyn B, Neiland JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Shida O, Takagi H, Kadowaki K, Yano H, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. Nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946

    Article  CAS  Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, The Netherlands, pp 111–142

    Chapter  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425–448

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony method. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from Rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496

    Article  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizer. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Waino M, Tindall BJ, Schumann P, Ingvorsen K (1999) Gracillbacillus gen. nov., with description of Graclibacillus holotolerence gen. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb Nov. Int J Syst Bacteriol 49:821–831

    Article  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Wisotzkey JD, Jurtshuk P Jr, Fox GE, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16 s r RNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for certain of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269

    Article  CAS  Google Scholar 

  • Yoon JH, Weiss N, Lee KC, Lee IS, Kang KH, Park YH (2001) Jeotgalibacillus alimentarius gen. nov., sp. Nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, reclassification of Bacillus marinus Ruger 1983 as Marinibacillus marinus gen. nov., comb, Nov. Int J Syst Evol Microbiol 51:2087–2093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Council of Scientific and industrial Research (CSIR), India is acknowledged to provide Senior Research Fellowship to author Sangeeta Kadyan. Authors are also thankful to UGC, New Delhi for the award of UGC-SAP grant and Department of Science and Technology, New Delhi for providing financial grants under DST-FIST programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Parkash Yadav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11274_2013_1323_MOESM1_ESM.jpg

ESM Fig. 1: Colony morphology pictures of 52 AEFB strains (A to AZ) B. marisflavi JP44SK40, B. megaterium JP44SK1, B. megaterium JP44SK2, Lysinibacillus sphaericus JP44SK3, L. sphaericus JP44SK4, B. flexus JP44SK19, B. megaterium strain JP44SK21, B. firmus JP44SK20, Brevibacillus laterosporus JP44SK51, B. cereus JP44SK22, B. aryabhattai JP44SK38, B. megaterium JP44SK39, Brevibacillus laterosporus JP44SK41, B. megaterium JP44SK5, B. licheniformis JP44SK6, Paenibacillus sp. JP44SK7, B. mycoides JP44SK8, B. mycoides JP44SK9, B. subtilis subsp. spizizenii JP44SK23, B. subtilis subsp. spizizenii JP44SK24, B. simplex JP44SK25, B. simplex JP44SK26, B. cereus JP44SK27, B. cereus JP44SK42, B. cereus JP44SK43, Jeotgalibacillus sp. JP44SK56, B. aryabhattai JP44SK11, B. megaterium JP44SK10, Lysinibacillus xylanilyticus JP44SK52, B. simplex JP44SK12, B. simplex JP44SK13, B. aquimaris JP44SK28, B. simplex JP44SK29, B. simplex JP44SK30, B. simplex JP44SK31, B. simplex JP44SK32, B. cereus JP44SK44, B. cereus JP44SK45, Terribacillus saccharophilus JP44SK46, B. arsenicus JP44SK14, B. marisflavi JP44SK15, B. firmus JP44SK16, Bacillus sp. JP44SK17, B. megaterium JP44SK18, B. cereus JP44SK34, B. cereus JP44SK33, B. megaterium JP44SK35, B. mycoides JP44SK36, B. cereus JP44SK37, Terribacillus goriensis JP44SK47, B. cereus JP44SK49, B. mycoides JP44SK50 (JPEG 229 kb)

ESM Fig. 2(A, B): Antagonistic activity pictures of six bacterial strains (JPEG 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadyan, S., Panghal, M., Kumar, S. et al. Assessment of functional and genetic diversity of aerobic endospore forming Bacilli from rhizospheric soil of Phyllanthus amarus L.. World J Microbiol Biotechnol 29, 1597–1610 (2013). https://doi.org/10.1007/s11274-013-1323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1323-3

Keywords

Navigation