Skip to main content
Log in

Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Antimicrobial activity of solvent extracts and flavonoids of Calotropis procera growing wild in Saudi Arabia was evaluated using the agar well-diffusion method. A bioassay-guided fractionation of the crude flavonoid fraction (Cf3) of MeOH extract which showed the highest antimicrobial activity led to the isolation of four flavonoid glycosides as the bioactive constituents. Structure of compounds have been elucidated using physical and spectroscopic methods including (UV, IR, 1H, 13C-NMR, DEPT, 2D 1H–1H COSY, HSQC, HMBC and NOESY). Compounds were found to be the 3-O-rutinosides of quercetin, kaempferol and isorhamnetin, besides the flavonoid 5-hydroxy-3,7-dimethoxyflavone-4′-O-β-glucopyranoside. Most of the isolated extracts showed antimicrobial activity against the test microorganisms, where the crude flavonoid fraction was the most active, diameter of inhibition zones ranged between 15.5 and 28.5 mm against the tested bacterial strains, while reached 30 mm against the fungal Candida albicans. The minimal inhibitory concentrations varied from 0.04 to 0.32 mg/ml against all of the tested microorganisms in case of the crude flavonoid fraction. Quercetin-3-O-rutinoside showed superior activity over the remainder flavonoids. The Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) were more susceptible than the Gram-negative (Pseudomonas aeruginosa and Salmonella enteritidis) and the yeast species were more susceptible than the filamentous fungi. The study recommend the use of such natural products as antimicrobial biorationals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arya S, Kumar V (2005) Anti-inflammatory efficacy of extracts of latex of Calotropis procera against different mediators of inflammation. Mediat Inflamm 4:228–232

    Article  Google Scholar 

  • Barnabas C, Nagarajan S (1988) Antimicrobial flavonoids of some medicinal plants. Fitoterapia 59:508–510

    Google Scholar 

  • Bello I, Ndukwe G, Audu O, Habila J (2011) A bioactive flavonoid from Pavetta crassipes K. Schum. Org Med Chem Lett 1:14

    Article  Google Scholar 

  • Beuchat L, Golden D (1989) Antimicrobials occurring naturally in foods. Food Technol 43(1):134–142

    CAS  Google Scholar 

  • Casley-Smith J, Casley-Smith J (1986) High-protein oedemas and the benzo-gamma-pyrones. Lippincott, Sydney

    Google Scholar 

  • Choedon T, Mathan G, Arya S, Kumar VL, Kumar V (2006) Anticancer and cytotoxic properties of the latex of Calotropis procera in a transgenic mouse model of hepatocellular carcinoma. World J Gastroenterol 12:2517–2522

    Article  Google Scholar 

  • Cushnie T, Lamb A (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  Google Scholar 

  • Eloff J (1998) Which extractant should be used for the screening and isolation of antimicrobial components from plants. J Ethnopharmacol 60:1–8

    Article  CAS  Google Scholar 

  • Essawi T, Srour M (2000) Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharmacol 70:343–349

    Article  CAS  Google Scholar 

  • Farnsworth N (1994) The role of medicinal plants in drug development. In: Krogsgaard Larsen S, Brogger-Christensen S, Kofod H (eds) Natural products and drug development. Munksgaard, Copenhagen

    Google Scholar 

  • Hausen B, Wollenweber E, Seuff H, Post B (1987) Propolis allergy (I). Origin, properties, usage and literature review. Contact Dermat 17:163–170

    Article  CAS  Google Scholar 

  • Havsteen B (2002) The biochemistry and medical significance of flavonoids. Pharmacol Therapeut 96:66–202

    Article  Google Scholar 

  • Heneidak S, Grayer R, Kite G, Simmonds MSJ (2006) Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, subfamily Asclepiadoideae). Biochem Syst Ecol 34:575–584

    Article  CAS  Google Scholar 

  • Kareem S, Akpan I, Ojo O (2008) Antimicrobial activities of Calotropis procera on selected pathogenic microorganisms. Afr J Biomed Res 11:105–110

    Google Scholar 

  • Mathabe M, Nikolova R, Lall N, Nyazema N (2006) Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa. J Ethnopharmacol 105:286–293

    Article  CAS  Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides T (2000) The effects of plant flavonoids on mammalian cells, implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  Google Scholar 

  • Nazaruk J, Jakoniuk P (2005) Flavonoid composition and antimicrobial activity of Cirsium rivulare (Jacq.) All. flowers. J Ethnopharmacol 102:208–212

    Article  CAS  Google Scholar 

  • Newman D, Cragg G (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  CAS  Google Scholar 

  • Okeke I, Laxmaninarayan R, Bhutta Z, Duse A, Jenkins P, O’Brien T, Pablos-Mendez A, Klugman K (2005) Antimicrobial resistance in developing countries. Part I, recent trends and current status. Lancet Infect Dis 5:481–493

    Article  CAS  Google Scholar 

  • Rasoanaivo P, Ratsimamanga-Urverg S (1993) Biological evaluation of plants with reference to the Malagasy flora. Monograph for the IFS-NAPRECA workshop on Bioassays, Antananarivo, Madagascar

  • Rigano D, Formisano C, Basile A, Lavitola A, Senatore F, Rosselli S, Bruno M (2007) Antibacterial activity of flavonoids and phenylpropanoids from Marrubium globosum ssp. libanoticum. Phytother Res 21(4):395–397

    Article  CAS  Google Scholar 

  • Rojas A, Hernandez L, Pereda-Miranda R, Mata R (1992) Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants. J Ethnopharmacol 35:275–283

    Article  CAS  Google Scholar 

  • Roy S, Rao K, Bhuvaneswari Ch, Giri A, Mangamoori LN (2010) Phytochemical analysis of Andrographis paniculata extract and its antimicrobial activity. World J Microbiol Biotechnol 26:85–91

    Article  CAS  Google Scholar 

  • Sehgal R, Roy S, Kumar V (2006) Evaluation of cytotoxic potential of latex of Calotropis procera and podophyllotoxin in Allium cepa model. Biocell 30:9–13

    CAS  Google Scholar 

  • Shaker K, Morsy N, Zinecker H, Imhoff J, Schneider B (2010) Secondary metabolites from Calotropis procera (Aiton). Phytochem Lett 3:212–216

    Article  CAS  Google Scholar 

  • Sharififar F, Dehghn-Nudeh G, Mirtajaldini M (2009) Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem 112:885–888

    Article  CAS  Google Scholar 

  • Skibola C, Smith M (2000) Potential health impacts of excessive flavonoid intake. Free Radic Biol Med 29:375–383

    Article  CAS  Google Scholar 

  • Srivastava J, Lambert J, Vietmeyer N (1996) Medicinal plants, an expanding role in development. The World Bank, Washington, p 18

    Book  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    Article  CAS  Google Scholar 

  • Tsuchiya H, Sato M, Miyazaki T, Fujiwara S, Tanigaki S, Ohyama M, Tanaka T, Iinuma M (1996) Comparative study on the antibacterial activity of phytochemical flavanones against methicillin resistant Staphylococcus aureus. J Ethnopharmacol 50(1):27–34

    Article  CAS  Google Scholar 

  • Wagner H, Ulrich-Merzenich G (2009) Synergy research, approaching a new generation of phytopharmaceuticals. Phytomedicine 16:97–110

    Article  CAS  Google Scholar 

  • Williamson EM (2001) Synergy and other interactions in phytomedicines. Phytomedicine 8:401–409

    Article  CAS  Google Scholar 

  • Yao J, Moellering R (1995) Antibacterial agents. In: Murray P, Baron E, Pfaller M, Tenover F, Yolken R (eds) Manual of clinical microbiology. ASM Press, Washington, pp 1281–1290

    Google Scholar 

  • Yesmin M, Uddin S, Mubassara S, Akond M (2008) Antioxidant and antibacterial activities of Calotropis procera. Amer-Eurasian J Agric Environ Sci 4(5):550–553

    Google Scholar 

  • Zhou M, Luo H, Li Z, Wu F, Huang C, Ding Z, Li R (2012) Recent advances in screening of natural products for antimicrobial agents. Comb Chem High Throughput Screen 15(4):306–315

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The author has declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gomah Nenaah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nenaah, G. Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World J Microbiol Biotechnol 29, 1255–1262 (2013). https://doi.org/10.1007/s11274-013-1288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1288-2

Keywords

Navigation