Skip to main content
Log in

Virulence of the entomopathogenic fungus Metarhizium anisopliae using soybean oil formulation for control of the cotton stainer bug, Dysdercus peruvianus

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) is an insect pest that causes heavy losses in cotton plantations. The need to reduce the use of insecticides for control of this pest has increased steadily, and Metarhizium anisopliae (Ascomycota: Clavicipitaceae) could be an important biopesticide candidate to control this pest. The effect of M. anisopliae on D. peruvianus nymphs and adults using formulations with soybean oil and Agral® was evaluated. Formulation using 10% soybean oil added to 108 conidia mL−1 (grown on used and reused rice) was the most effective for nymph and adult, causing 100% mortality 6 and 7 days after exposure, respectively. The SEM analysis of infected insects showed that M. anisopliae conidia were able to adhere anywhere on the exoskeleton, but were more abundant between the joints. Using the same rice for two batches of growth may be an option for improving commercial conidial production of M. anisopliae and may reduce overall costs. Its effect on D. peruvianus adults opens a new possibility for using this fungus as an alternative to chemical pesticides and the use of M. anisopliae in association with integrate pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbar W, Lord JC, Howard RW (2004) Diatomaceous earth increases the efficacy of Beauveria bassiana against Tribolium castaneum larvae and increases conidia attachment. J Econ Entomol 97:273–280

    Article  Google Scholar 

  • Albernaz DAS, Tai MHH, Luz C (2009) Enhanced ovicidal activity of an oil formulation of the fungus Metarhizium anisopliae on the mosquito Aedes aegypti. Med Vet Entonol 23:141–147

    Article  CAS  Google Scholar 

  • Alves SB (1998) Controle microbiano de insetos. Fundação de Estudos Agrários Luiz de Queiroz, Piracicaba

    Google Scholar 

  • Alves RT, Bateman RP, Prior C, Leather SR (1998) Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Prot 17:675–679

    Article  CAS  Google Scholar 

  • Arruda W, Lubeck I, Schrank A, Vainstein MH (2005) Morphological alterations of Metarhizium anisopliae during penetration in Boophilus microplus ticks. Exp Appl Acarol 37:231–244

    Article  Google Scholar 

  • Bateman RP, Carey M, Moore D, Prior C (1993) The enhanced infectivity of Metarhzium flavoviride in oil formulations to desert locusts at low humidities. Ann Appl Biol 122:145–152

    Article  Google Scholar 

  • Bateman RP, Douro-Kpindou OK, Kooyman C, Lomer C, Ouambama Z (1998) Some observations on the dose transfer of mycoinsecticide sprays to desert locusts. Crop Prot 17:151–158

    Article  CAS  Google Scholar 

  • Batta YA (2003) Production and testing of novel formulations of the entomopathogenic fungus Metarhizium anisopliae (Metschinkoff) Sorokin (Deuteromycotina: Hyphomycetes). Crop Prot 22:415–422

    Article  Google Scholar 

  • Bidochka MJ, St Leger RJ, Roberts DW (1997) Mechanisms of deuteromycete fungal interactions in grasshoppers and locusts: an overview. Mem Entomol Soc Canada 171:224–231

    Google Scholar 

  • Bogo MR, Rota CA, Pinto H Jr, Ocampos M, Correa CT, Vainstein MH, Schrank A (1998) A chitinase encoding gene (chit1 gene) from the entomopathogenic Metarhizium anisopliae: isolation and characterization of genomic and full-length cDNA. Curr Microbiol 37:221–225

    Article  CAS  Google Scholar 

  • Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56

    CAS  Google Scholar 

  • Deising HB, Werner S, Wernitz M (2000) The role of fungal apressoria in plant infection. Microb Infect 2:1631–1641

    Article  CAS  Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  Google Scholar 

  • Frazzon APG, Vaz junior I, Masuda A, Schrank A, Vainstein MH (2000) In vitro assessment of Metarhizium anisopliae isolates to control the cattle tick Boophilus microplus. Vet Parasitol 94:117–125

    Article  CAS  Google Scholar 

  • Gallo D (1988) Manual de Entomologia Agrícola. CERES, São Paulo

    Google Scholar 

  • Goettel MS, Roberts DW (1992) Mass production, formulation and field application of entomopathogenic fungi. In: Lomer CJ, Prior C (eds) Biological control of locusts and grasshoppers. CAB International, USA, pp 230–238

    Google Scholar 

  • Inglis GD, Goettel MS, Johnson DL (1995) Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus Beauveria bassiana. Biol Control 5:581–590

    Article  Google Scholar 

  • Jenkins NE (1998) Development of mass production technology for aerial conidia for use as mycospesticides. Biocontrol News Inform 19:21–31

    Google Scholar 

  • Kaaya GP, Hassan S (2000) Entomogenous fungi as promising biopesticides for tick control. Exp Appl Acarol 24:913–926

    Article  Google Scholar 

  • Kirkland BH, Cho E, Keyhani NO (2004) Differential susceptibility of Amblyomma maculatum and Amblyomma americanum (Acari:Ixodidea) to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Biol Control 31:414–421

    Article  Google Scholar 

  • Lazzarini GM, Rocha LF, Luz C (2006) Impact of moisture on in vitro germination of Metarhizium anisopliae and Beauveria bassiana and their activity on Triatoma infestans. Mycol Res 110:485–492

    Article  Google Scholar 

  • Li Z, Alves SB, Roberts DW, Fan M, Delalibera I Jr, Tang J, Lopes RB, Faria M, Rangel DEN (2010) Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Sci Technol 20:117–136

    Article  Google Scholar 

  • Lubeck I, Arruda W, Souza BK, Stanisçuaski F, Carlini CR, Schrank A, Vainstein MH (2008) Evaluation of Metarhizium anisopliae strains as potential biocontrol agents of the tick Rhipicephalus (Boophilus) microplus and the cotton stainer Dysdercus peruvianus. Fungal Ecol 1:78–88

    Article  Google Scholar 

  • Luz C, Tigano MS, Silva IG, Cordeiro CM, Aljanabi SM (1998) Selection of Beauveria bassiana and Metarhizium anisopliae isolates to control Triatoma infestans. Mem Inst Oswaldo Cruz 93:839–846

    Article  CAS  Google Scholar 

  • Milano P, Consoli FL, Zerio NG, Parra JRP (1999) Thermal requirements of the cotton stainer Dysdercus peruvianus Guérin-Méneville (Hemiptera: Pyrrhocoridae). An Soc Entomol Brasil 28:233–238

    Article  Google Scholar 

  • Moino A Jr, Alves SB, Lopes RB, Neves PMOJ, Pereira RM, Vieira SA (2002) External development of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in the subterranean termite Heterotermes tenuis. Sci Agric 59:267–273

    Article  Google Scholar 

  • Moore DP, Bridge D, Higgins PM, Bateman R, Proir C (1992) Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Ann Appl Biol 122:605–616

    Article  Google Scholar 

  • Mullen LM, Goldsworthy GJ (2006) Immune responses of locusts to challenge with the pathogenic fungus Metarhizium or high doses of laminarin. J Insect Physiol 52:389–398

    Article  CAS  Google Scholar 

  • Paula AR, Brito ES, Pereira CR, Carrera MP, Samuels RI (2008) Susceptibility of adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for Dengue vector control. Biocontrol Sci Technol 18:1017–1025

    Article  Google Scholar 

  • Pires LM, Marques EJ, Wanderley-Teixeira V, Teixeira AA, Alves LC, Alves ES (2009) Ultrastructure of Tuta absoluta parasitized eggs and the reproductive potential of females after parasitism by Metarhizium anisopliae. Micron 40:255–261

    Article  Google Scholar 

  • Polar P, Kairo MT, Moore D, Pegram R, John AS (2005) Comparison of water, oils and emulsifiable adjuvant oils as formulating agents for Metarhizium anisopliae for use in control of Boophilus microplus. Mycopathol 160:151–157

    Article  CAS  Google Scholar 

  • Raymond M (1985) Presentation d’un programme d’analyse logprobit pour micro-ordinateur. Cah Orstom Entomol Med Parasitol 22:117–121

    Google Scholar 

  • Santi L, Silva WOB, Berger M, Guimaraes JA, Schrank A, Vainstein MH (2010a) Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 55:874–880

    Article  CAS  Google Scholar 

  • Santi L, Silva WOB, Pinto AFM, Schrank A, Vainstein MH (2010b) Metarhizium anisopliae host-pathogen interaction: differential immunoproteomics reveals proteins involved in the infection process of arthropods. Fungal Biol 114:312–319

    Article  CAS  Google Scholar 

  • Scholte E, Ng′habi K, Kihonda J, Takken W, Paaijmans K, Abdulla S, Killeen GF, Knols BGJ (2005) An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308:1641–1652

    Article  CAS  Google Scholar 

  • Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56:1267–1274

    Article  CAS  Google Scholar 

  • Silva MV, Santi L, Staats CC, Costa AM, Colodel EM, Driemeier D, Vainstein MH, Schrank A (2005) Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Res Microbiol 156:382–392

    Article  Google Scholar 

  • Silva WOB, Santi L, Berger M, Pinto AFM, Guimarães JA, Schrank A, Vainstein MH (2009) Characterization of a spore surface lipase from the biocontrol agent Metarhizium anisopliae. Proc Biochem 44:829–834

    Article  CAS  Google Scholar 

  • Silva WOB, Santi L, Schrank A, Vainstein MH (2010a) Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biol 114:10–15

    Article  Google Scholar 

  • Silva WOB, Santi L, Correa APF, Silva LAD, Bresciani FR, Schrank A, Vainstein MH (2010b) The entomopathogen Metarhizium anisopliae can modulate the secretion of lipolytic enzymes in response to different substrates including components of arthropod cuticle. Fungal Biol 114:911–916

    Article  Google Scholar 

  • Soares JJ, de Almeida RP (1998) Manejo integrado de pragas do algodoeiro, com ênfase aos efeitos colaterais dos pesticidas e o uso de controle biológico. EMBRAPA-CNP, 46p

  • SPSS Inc (2003) SPSS Statistical Software CD-ROM version 13.0 for Windows. SPSS Inc, Chicago

    Google Scholar 

  • Stanisçuaski F, Ferreira-da Silva CT, Mulinari F, Pires-Alves M, Carlini CR (2005) Insecticidal effects of canatoxin on the cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Toxicon 45:753–760

    Article  Google Scholar 

  • Vestergaard S, Butt TM, Bresciani J, Gillespie TA, Eilenberg J (1999) Light and electron microscopy studies of the infection of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) by the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 73:25–33

    Article  Google Scholar 

  • Wright C, Brooks A, Wall R (2004) Toxicity of the entomopathogenic fungus, Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) to adult females of the blowfly Lucilia sericata (Diptera: Calliphoridae). Pest Man Sci 60:639–644

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Laboratório de Proteínas Tóxicas (LAPROTOX) for providing insects for the bioassays. The work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilene Henning Vainstein.

Additional information

Lucélia Santi and Lucas André Dedavid e Silva contributed equally for this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santi, L., e Silva, L.A.D., da Silva, W.O.B. et al. Virulence of the entomopathogenic fungus Metarhizium anisopliae using soybean oil formulation for control of the cotton stainer bug, Dysdercus peruvianus . World J Microbiol Biotechnol 27, 2297–2303 (2011). https://doi.org/10.1007/s11274-011-0695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0695-5

Keywords

Navigation