Skip to main content
Log in

Biosorption of hexavalent chromium using biofilm of E. coli supported on granulated activated carbon

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The optimization of hexavalent chromium biosorption has been studied by using three different biosorbents; biofilm of E. coli ASU 7 supported on granulated activated carbon (GAC), lyophilized cells of E. coli ASU 7 and granulated activated carbon. Supporting of bacteria on activated carbon decreased both the porosity and surface area of the GAC. Significant decrement of surface area was correlated to the blocking of microspores as a result of the various additional loads. The experimental data of adsorption was fitted towards the models postulated by Langmuir and Freundlich and their corresponding equations. The maximum biosorption capacity for hexavalent chromium using biofilm, GAC and E. coli ASU 7 were 97.70, 90.70, 64.36 mg metal/g at pH 2.0, respectively. Biosorption mechanism was related mainly to the ionic interaction and complex formation. Based on the experimental conditions, the presence of bacteria could be enhanced the capacity of activated carbon to adsorb hexavalent chromium ions from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akar T, Tunali S (2005) Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd (II) and Cu(II) ions from aqueous solutions. Miner Eng 18:1099–1109

    Article  CAS  Google Scholar 

  • Atlas RM (2004) Handbook of microbiological media, 3rd edn. CRC Press Inc., Boca Raton

  • Bai RT, Abraham E (2001) Biosorption of Cr(VI) from aqueous solution by Rhizopus nigricans. Bioresour Technol 79:73–81

    Article  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  • Bhinde JV, Dhakephalkar PK, Paknikar KM (1996) Microbiological process for the removal of Cr(VI) from chromate bearing cooling tower effluent. Biotechnol Lett 18:667–672

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Chong KH, Volesky B (1995) Description of 2-metal biosorption equilibria by Langmuir-type models. Biotechnol Bioeng 47:451–460

    Article  CAS  Google Scholar 

  • EL-Shafey IE (2005) Behaviour of reduction-sorption chromium (VI) from an aqueous solution on a modified sorbent from rice husk. Water Air Soil Pollut 163:81–102

    Article  CAS  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a Int. Biodeterior Biodegrad 62:195–203

    Article  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420

    Article  CAS  Google Scholar 

  • Khambhaty Y, Mody K, Basha S, Jha B (2009) Biosorption of Cr(VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World J Microbiol Biotechnol. doi: 10.1007/s11274-009-0028-0

  • Komy ZR, Gabar RM, Shoriet AAM, Mohammed RM (2006) Characterization of acidic sites of Pseudomonas biomass capable of binding protons and cadmium and removal of cadmium via biosorption. World J Microbiol Biotechnol 22:975–982

    Article  CAS  Google Scholar 

  • Kugel LE, Kokes JR, Gryder WJ (1975) Infrared study of nitric oxide adsorbed on silica-supported chromia. J Catal 36:142–151

    Article  Google Scholar 

  • Lameiras S, Quintelas C, Tavares T (2008) Biosorption of Cr(VI) using a bacterial biofilm supported on granular activated carbon and on zeolite. Bioresour Technol 99:801–806

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc 40:413–417

    Article  Google Scholar 

  • Lecloux A, Pirard PJ (1979) The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. J Colloid Interface Sci 70:265–281

    Article  CAS  Google Scholar 

  • Liu GY, Wh XU, Zeng MG, Li X, Gao H (2006) Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986

    Article  CAS  Google Scholar 

  • Lodeiro P, Barriada JL, Herrero R, Sastre de Vicente ME (2006) The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies. Environ Pollut 142:264–273

    Article  CAS  Google Scholar 

  • Lopez A, Larao N, Priergo J, Marques A (2001) Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biotechnol 24:146–151

    Article  Google Scholar 

  • Mise SR, Shantha GMM (1993a) Adsorption studies of chromium (VI) from synthetic aqueous solution by activated carbon derived from bagasse. J Environ Sci Health A 28(10):2263–2280

    Article  Google Scholar 

  • Mise SR, Shantha GMM (1993b) Adsorption studies of chromium (VI) from synthetic aqueous solution by activated carbon derived from bagasse. J Environ Sci Health Part A, Environ Sci Eng Toxic Hazard Subst Control 28:2263–2280

    Google Scholar 

  • Myers LD, Lunsford HJ (1985) Silica-supported chromium catalysts for ethylene polymerization. J Catal 92:260–271

    Article  CAS  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32

    CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2005) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem 40:2559–2565

    Article  CAS  Google Scholar 

  • Quintelas C, Fernandes B, Castro J, Figueiredo H, Tavares T (2007) Biosorption of Cr(VI) by a Bacillus coagulans biofilm supported on granular activated carbon (GAC). Chem Eng J 136:195–203

    Article  CAS  Google Scholar 

  • Rivera-Utrilla J, Baustista-Toledo I, Ferro-Garcia AM, Moreno-Castilla C (2001) Activated carbon surface modification by adsorption of bacteria and their effect on aqueous lead adsorption. J Chem Technol Biotechnol 76:1209–1215

    Article  CAS  Google Scholar 

  • Sar P, Kazy S, Asthana R, Singh S (1999) Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. Int Biodeterior Biodegrad 44:101–110

    Article  CAS  Google Scholar 

  • Schiewer S, Volesky B (1995) Modeling of proton-metal ion exchange in biosorption. Environ Sci Technol 29:3049–3058

    Article  CAS  Google Scholar 

  • Schwarz HP, Childs RC, Dreisbach L, Mastrangelo SV, Kleschick A (1985) KBr disk technique for infrared microanalysis with freeze drying of samples soluble in organic solvents but insoluble in water. Appl Spectrosc 12:35–38

    Article  Google Scholar 

  • Scott A, Karanjkar A (1995) Adsorption isotherms and diffusion coefficients for metal biosorbed by biofilm coated granular activated carbon. Biotechnol Lett 17:1267–1270

    Article  CAS  Google Scholar 

  • Sharma DC, Forster CF (1993) Removal of hexavalent chromium using Sphagnum moss peat. Water Res 27:1201–1208

    Article  CAS  Google Scholar 

  • Sharma DC, Forster CF (1994) A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents. Bioresour Technol 47:257–264

    Article  CAS  Google Scholar 

  • Sharma DC, Forster CF (1996) Removal of hexavalent chromium from aqueous solutions by granular activated carbon. Water SA 22:153–160

    CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Snyder JWJ, Mains CN, Anderson RE, Bissonnette GK (1995) Effect of point-of-use, activated carbon filters on the bacteriological quality of rural groundwater supplies. Appl Environ Microbiol 61:4291–4295

    CAS  Google Scholar 

  • Tewari N, Vasudevan P, Guha BK (2005) Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem Eng J 23:185–192

    Article  CAS  Google Scholar 

  • Trivedi BD, Patel KC (2007) Biosorption of hexavalent chromium from aqueous solution by a tropical basidiomycete BDT-14 (DSM 15396). World J Microbiol Biotechnol 23:683–689

    Article  CAS  Google Scholar 

  • Tunali S, Akar T, Safa¨ Ozcan A, Kiran I, Ozcan A (2006) Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47:105–112

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  Google Scholar 

  • Zemin MA, Wenjie ZHU, Huaizhong LLC, Wang Q (2007) Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions. Process Biochem 42:1028–1032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. M. Shoreit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabr, R.M., Gad-Elrab, S.M.F., Abskharon, R.N.N. et al. Biosorption of hexavalent chromium using biofilm of E. coli supported on granulated activated carbon. World J Microbiol Biotechnol 25, 1695–1703 (2009). https://doi.org/10.1007/s11274-009-0063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0063-x

Keywords

Navigation