Skip to main content
Log in

Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A total of 445 actinomycete isolates were obtained from 16 medicinal plant rhizosphere soils. Morphological and chemotaxonomic studies indicated that 89% of the isolates belonged to the genus Streptomyces, 11% were non-Streptomycetes: Actinomadura sp., Microbispora sp., Micromonospora sp., Nocardia sp, Nonomurea sp. and three isolates were unclassified. The highest number and diversity of actinomycetes were isolated from Curcuma mangga rhizosphere soil. Twenty-three Streptomyces isolates showed activity against at least one of the five phytopathogenic fungi: Alternaria brassicicola, Collectotrichum gloeosporioides, Fusarium oxysporum, Penicillium digitatum and Sclerotium rolfsii. Thirty-six actinomycete isolates showed abilities to produce indole-3-acetic acid (IAA) and 75 isolates produced siderophores on chrome azurol S (CAS) agar. Streptomyces CMU-PA101 and Streptomyces CMU-SK126 had high ability to produced antifungal compounds, IAA and siderophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnow LE (1937) Colorimetric estimation of the components of 3,4-dihydroxy phenylalanine tyrosine mixtures. J Biol Chem 118:531–535

    CAS  Google Scholar 

  • Atalan E, Manfio GP, Ward AC, Kroppenstedt RM, Goodfellow M (2000) Biosystematic studies on novel Streptomycetes from soil. Antonie Van Leeuwenhoek 77:337–353

    Article  CAS  Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46:324–328

    Article  CAS  Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    Article  CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    Google Scholar 

  • Csaky T (1948) On the estimation of bound hydroxylamine. Acta Chem Scand 2:450–454

    Article  CAS  Google Scholar 

  • El-Tarabilya KA, Sivasithamparamb K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • Germida JJ, Sicilliano SD, de Freitas RJ, Seib AM (1998) Diversity of root-associated with field grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Goodfellow M, Simpson KE (1987) Ecology of Streptomycetes. Front Appl Microbiol 2:97–125

    Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  Google Scholar 

  • Hasegawa T, Takisawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Hayakawa M, Yoshida Y, Iimura Y (2004) Selection of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. J Gen Appl Microbiol 96:973–981

    Article  CAS  Google Scholar 

  • Hayakawa M, Ishizawa K, Nonomura H (1988) Distribution of rare actinomycetes in Japanese soils. J Ferment Tech 66:367–373

    Article  Google Scholar 

  • Henis Y (1986) Soil microorganisms, soil organic matter and soil fertility. In: Chen Y, Martinus Avnimelech (eds) The role of organic matter in modern agriculture. Nijhoff, Dordrecht, pp 159–168

    Google Scholar 

  • Holt JA, Krieg NR, Sneath PHA (1994) Bergey’s manual of determinative bacteriology. Baltimore, MD

    Google Scholar 

  • Jayasinghe BATD, Parkinson D (2007) Actinomycetes as antagonists of litter decomposer fungi. Appl Soil Ecol 38:109–118

    Article  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L (1995) Effect of two plant species, Flax (Linum usitatissinum, L.) and tomato (Lycopersicon esculentum Mill), on the diversity of soil borne populations of fluorescent Pseudomonads. Appl Environ Microbiol 61:1004–1012

    CAS  Google Scholar 

  • Leong J (1996) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  Google Scholar 

  • Merckx R, Dijkra A, Hartog AD, Veen JAV (1987) Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biol Fertil Soils 5:126–132

    Article  Google Scholar 

  • Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J Bacteriol 160:304–312

    CAS  Google Scholar 

  • Muller G, Matzanke BF, Raymond KN (1984) Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. J Bacteriol 160:313–318

    CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Neilands JB, Leong J (1986) Siderophores in relation to plant growth and disease. Annu Rev Phytopathol 37:187–208

    CAS  Google Scholar 

  • Ouhdouch Y, Barakate M (2001) Actinomycetes of Moroccan habitats: isolation and screening for antifungal activities. Eur J Soil Biol 37:69–74

    Article  Google Scholar 

  • Pandey A, Palni LMS (2007) The rhizosphere effect in trees of the Indian Central Himalaya with special reference to altitude. Appl Ecol Environ Res 5:93–102

    Google Scholar 

  • Sembiring L, Ward AC, Goodfellow M (2000) Selective isolation and characterization of members of the Streptomyces violaceusniger clade associated with the roots of Paraserianthes falcataria. Antonie Van Leeuwenhoek 78:353–366

    Article  CAS  Google Scholar 

  • Shimizu M, Nakagawa Y, Sato Y, Furumai T, Igaroshi Y, Onaka H, Yoshida R, Kunoh H (2000) Studies on endophytic actinomycetes I Streptomyces sp. isolated from Rododendron and its antifungal activity. J Gen Plant Pathol 66:360–366

    Article  CAS  Google Scholar 

  • Suzuki S, Yamamoto K, Okuda T, Nishio M, Nakanishi N, Komatsubara S (2000) Selective isolation and distribution of Actinomadura rugatobispora strains in soil. Actinomycetology 14:27–33

    Article  Google Scholar 

  • Takisawa M, Colwell RR, Hill RT (1993) Isolation and diversity of actinomycetes in the Chesapeake Bay. Appl Environ Microbiol 59:997–1002

    Google Scholar 

  • Teachowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotech 19:381–385

    Article  Google Scholar 

  • Tewtrakul S, Subhadhirasakul S (2007) Anti-allergic activity of some selected plants in the Zingiberaceae family. J Ethnopharmacol 109:535–538

    Article  Google Scholar 

  • Thangapandian V, Ponmuragan P, Ponmuragan K (2007) Actinomycetes diversity in the rhizosphere soil of different medicinal plants in Kolly Hills Termilnadu, India, for secondary metabolite production. Asian J Plant Sci 6:66–70

    Article  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant–microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon T, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Wiehe W, Scholoter M, Hartmann A, Hofich G (1996) Detection of colonization by Pseudomonas PsIA12 of inoculated roots of Lupinus albus and Pisum sativum in greenhouse experiments with immunological techniques. Symbiosis 20:129–145

    CAS  Google Scholar 

  • Yang L, Xie J, Jiang D, Fu Y, Li G, Lin F (2007) Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    Article  CAS  Google Scholar 

  • You JL, Cao LX, Liu GF, Zhou SN, Tan HM, Lin YC (2004) Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 21:679–682

    Article  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Royal Golden Jubilee Ph.D. Program (PHD/0153/2546). We are grateful to Dr. Eric H. C McKenzie (Landcare Research, Private Bag 92170, Auckland, New Zealand) for improving the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saisamorn Lumyong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamna, S., Yokota, A. & Lumyong, S. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25, 649–655 (2009). https://doi.org/10.1007/s11274-008-9933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9933-x

Keywords

Navigation