Skip to main content
Log in

Simultaneous Removal of Phosphate and Nitrate from Synthetic and Real Wastewater by Meretrix lusoria as an Efficient and Novel Material

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Phosphate (PO43−) and nitrate (NO3) contamination causes the threatening issue of eutrophication. A major waste from seafood industries of various seashells including Anadara inaequivalvis, Saccostrea commercialis, Perna viridis, Tegillarca granosa, Filopaludina martensi, Babylonai areolate and Meretrix lusoria was thermally modified and investigated for PO43− and NO3 removal from synthetic and domestic wastewater. It was found that some raw seashells could remove ≥85% of PO43−, whereas their NO3 removal efficiency was poor. However, after calcination, among others, only M. lusoria pyrolysed at 800 °C (M. lusoria F800) was found as a novel adsorbent for both PO43− and NO3 removal. An increase in temperature and increased Ca(OH)2 content enhance the removal of PO43− and NO3 by precipitating with calcium ions (Ca2+). M. lusoria F800 was the best for PO43− and NO3 removal compared with commercial lime and other calcined seashells. The maximum adsorption capacity (Qmax) of M. lusoria F800 for PO43− and NO3 was 700 mg/g and 170 mg/g, respectively, which was higher than the Qmax of PO43− and NO3 by commercial lime Ca(OH)2 which was about 465 mg/g and 18 mg/g, respectively. The crystals of calcium phosphate-hydroxide and calcium nitrate-hydroxide complexes were mainly found in M. lusoria F800 that adsorbed PO43− and NO3, respectively, as confirmed by X-ray diffractometer (XRD). Also, M. lusoria F800 could completely remove PO43− and NO3 from domestic wastewater. Hence, easily handled and cost-effective M. lusoria F800 would increase the value of this waste material, increase water quality and mitigate eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article and its supplementary data files, and can be available from the corresponding author on request.

References

  • Asaoka, S., Yamamoto, T., Kondo, S., & Hayakawa, S. (2009). Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresource Technology, 100, 4127–4132.

    Article  CAS  Google Scholar 

  • Belkada, F. D., Kitous, O., Drouiche, N., Aoudj, S., Bouchelaghem, O., Abdi, N., & Mameri, N. (2018). Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater. Separation and Purification Technology, 204, 108–115.

    Article  Google Scholar 

  • Chaikina, M. V., Bulina, N. V., Vinokurova, O. B., Prosanov, I. Y., & Dudina, D. V. (2019). Interaction of calcium phosphates with calcium oxide or calcium hydroxide during the “soft” mechanochemical synthesis of hydroxyapatite. Ceramics International, 45, 16927–16933.

    Article  CAS  Google Scholar 

  • Cho, Y. B., & Seo, G. (2010). High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresource Technology, 101, 8515–8519.

    Article  CAS  Google Scholar 

  • Dai, L., Zhu, W., He, L., Tan, F., Zhu, N., Zhou, Q., & Hu, G. (2018). Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal. Bioresource Technology, 267, 510–516.

    Article  CAS  Google Scholar 

  • Dai, Y., Wang, W., Lu, L., Yan, L., & Yu, D. (2020). Utilization of biochar for the removal of nitrogen and phosphorus. Journal of Cleaner Production, 257, 120573.

    Article  CAS  Google Scholar 

  • Delgadillo-Velasco, L., Hernández-Montoya, V., Montes-Morán, M. A., Gómez, R. T., & Cervantes, F. J. (2020). Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry. Journal of Cleaner Production, 242, 118564.

    Article  CAS  Google Scholar 

  • Ebtehaj, F., Habibzadeh, S., & Amininasab, S. M. (2020). An effective approach for nitrate removal from water using antimicrobial modified fish bone by silane groups containing quaternary ammonium salt. Separation Science and Technology, 55, 1415–1424.

    Article  CAS  Google Scholar 

  • Gouran-Orimi, R., Mirzayi, B., Nematollahzadeh, A., & Tardast, A. (2018). Competitive adsorption of nitrate in fixed-bed column packed with bio-inspired polydopamine coated zeolite. Journal of Environmental Chemical Engineering, 6, 2232–2240.

    Article  CAS  Google Scholar 

  • Guerra, A. A. A. M., Campos, A. F. C., de Lima, R. M., Kern, C., da Silva, F. G., Gomide, G., & Amorim, A. K. B. (2020). Efficient uptake of phosphorus from water by core@ shell bimagnetic nanoadsorbents. Journal of Environmental Chemical Engineering, 103888.

  • Jeon, D. J., & Yeom, S. H. (2009). Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate. Bioresource Technology, 100, 2646–2649.

    Article  CAS  Google Scholar 

  • Karageorgiou, K., Paschalis, M., & Anastassakis, G. N. (2007). Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. Journal of Hazardous Materials, 139, 447–452.

    Article  CAS  Google Scholar 

  • Kestrup, A., & Ricciardi, A. (2010). Influence of conductivity on life history traits of exotic and native amphipods in the St. Lawrence River. Fundamental and Applied Limnology, 176, 249–262.

    Article  Google Scholar 

  • Khan, M. D., Ahn, J. W., & Nam, G. (2018). Environmental benign synthesis, characterization and mechanism studies of green calcium hydroxide nano-plates derived from waste oyster shells. Journal of Environmental Management, 223, 947–951.

    Article  CAS  Google Scholar 

  • Khan, S. R., Jamil, S., Rashid, H., Ali, S., Khan, S. A., & Janjua, M. R. S. A. (2019). Agar and egg shell derived calcium carbonate and calcium hydroxide nanoparticles: Synthesis, characterization and applications. Chemical Physics Letters, 732, 136662.

    Article  CAS  Google Scholar 

  • Khan, M. D., Chottitisupawong, T., Vu, H. H., Ahn, J. W., & Kim, G. M. (2020). Removal of phosphorus from an aqueous solution by nanocalcium hydroxide derived from waste bivalve seashells: Mechanism and kinetics. ACS Omega, 12290–12301.

  • Kim, Y., Kim, D., Kang, S. W., Ham, Y. H., Choi, J. H., Hong, Y. P., & Ryoo, K. S. (2018). Use of powdered cockle shell as a bio-sorbent material for phosphate removal from water. Bulletin of the Korean Chemical Society, 39, 1362–1367.

    Article  CAS  Google Scholar 

  • Kumar, M., & Puri, A. (2012). A review of permissible limits of drinking water. Indian Journal of Occupational and Environmental Medicine, 16, 40–44.

    Article  Google Scholar 

  • Kumari, S., Jose, S., Tyagi, M., & Jagadevan, S. (2020). A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater. Journal of Cleaner Production, 254, 120037.

    Article  CAS  Google Scholar 

  • Li, R., Wang, J. J., Zhou, B., Awasthi, M. K., Ali, A., Zhang, Z., & Mahar, A. (2016). Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresource Technology, 215, 209–214.

    Article  CAS  Google Scholar 

  • Linde, K., & Jönson, A. S. (1995). Nanofiltration of salt solutions and landfill leachate. Desalination, 103, 223–232.

    Article  CAS  Google Scholar 

  • Liu, J., Jiang, J., Aihemaiti, A., Meng, Y., Yang, M., Xu, Y., & Chen, X. (2019). Removal of phosphate from aqueous solution using MgO-modified magnetic biochar derived from anaerobic digestion residue. Journal of Environmental Management, 250, 109438.

    Article  CAS  Google Scholar 

  • Liu, D., Quan, X., Zhu, H., Huang, Q., & Zhou, L. (2020). Evaluation of modified waste concrete powder used as a novel phosphorus remover. Journal of Cleaner Production, 257, 120646.

    Article  CAS  Google Scholar 

  • Loy, C. W., Matori, K. A., Lim, W. F., Schmid, S., Zainuddin, N., Wahab, Z. A., Alassan, Z. N., Hafiz, M., & Zaid, M. (2016). Effects of calcination on the crystallography and nonbiogenic aragonite formation of ark clam shell under ambient condition. Advances in Materials Science and Engineering, 1–8.

  • Makita, Y., Sonoda, A., Sugiura, Y., Ogata, A., Suh, C., Lee, J. H., & Ooi, K. (2020). Phosphorus removal from model wastewater using lanthanum hydroxide microcapsules with poly (vinyl chloride) shells. Separation and Purification Technology, 241, 116707.

    Article  CAS  Google Scholar 

  • Meghdadi, A. (2018). Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption. Water Research, 140, 364–376.

    Article  CAS  Google Scholar 

  • Meng, X. G., Bang, S. B., & Korfiatis, G. P. (2000). Effect of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Research, 34, 1255–1261.

    Article  CAS  Google Scholar 

  • Michel, V., Ildefonse, P., & Morin, G. (1996). Assessment of archaeological bone and dentine preservation from Lazaret Cave (Middle Pleistocene) in France. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 109–119.

    Article  Google Scholar 

  • Min, L., Zhongsheng, Z., Zhe, L., & Haitao, W. (2020). Removal of nitrogen and phosphorus pollutants from water by FeCl3-impregnated biochar. Ecological Engineering, 149, 105792.

    Article  Google Scholar 

  • Minakshi, M., Higley, S., Baur, C., Mitchell, D. R., Jones, R. T., & Fichtner, M. (2019). Calcined chicken eggshell electrode for battery and supercapacitor applications. RSC Advances, 9, 26981–26995.

    Article  CAS  Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman Jr., C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresource Technology, 160, 191–202.

    Article  CAS  Google Scholar 

  • Morris, S., Garcia-Cabellos, G., Ryan, D., Enright, D., & Enright, A. M. (2019). Low-cost physicochemical treatment for removal of ammonia, phosphate and nitrate contaminants from landfill leachate. Journal of Environmental Science and Health, 54, 1233–1244.

    Article  CAS  Google Scholar 

  • Nehrke, G., Poigner, H., Wilhelms-Dick, D., Brey, T., & Abele, D. (2012). Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochemistry, Geophysics, Geosystems, 13, 1–8.

    Article  Google Scholar 

  • Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Lee, D. J., & Bui, X. T. (2014). Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: Potential and obstacles. Bioresource Technology, 169, 750–762.

    Article  CAS  Google Scholar 

  • Nordin, N., Hamzah, Z., Hashim, O., Kasim, F. H., & Abdullah, R. (2015). Effect of temperature in calcination process of seashells. Malaysian Journal of Analytical Sciences, 19, 65–70.

    Google Scholar 

  • Ogata, F., Ueda, A., & Kawasaki, N. (2014). Removal of phosphate ions by PGAF (poly-γ-glutamic acid and flocculants). Journal of Water and Environment Technology, 12, 447–458.

    Article  Google Scholar 

  • Ogata, F., Ueda, A., Tanei, S., Imai, D., & Kawasaki, N. (2016). Simultaneous removal of phosphate and nitrite ions from aqueous solutions using modified soybean waste. Journal of Industrial and Engineering Chemistry, 35, 287–294.

    Article  CAS  Google Scholar 

  • Öztürk, N., & Bektaş, T. E. (2004). Nitrate removal from aqueous solution by adsorption onto various materials. Journal of Hazardous Materials, 112, 155–162.

    Article  Google Scholar 

  • Pap, S., Kirk, C., Bremner, B., Sekulic, M. T., Shearer, L., Gibb, S. W., & Taggart, M. A. (2020). Low-cost chitosan-calcite adsorbent development for potential phosphate removal and recovery from wastewater effluent. Water Research, 173, 115573.

    Article  CAS  Google Scholar 

  • Perea, A., Kelly, T., & Hangun-Balkir, Y. (2016). Utilization of waste seashells and Camelina sativa oil for biodiesel synthesis. Green Chemistry Letters and Reviews, 9, 27–32.

    Article  CAS  Google Scholar 

  • Pleissner, D., Zaman, T., & Peinemann, J. C. (2020). The effect of organic acids and alcohols on precipitation of phosphate using calcined seashell powder. Chemical Papers, 74, 1211–1217.

    Article  CAS  Google Scholar 

  • Powers, S. M., Bruulsema, T. W., Burt, T. P., Chan, N. I., Elser, J. J., Haygarth, P. M., & Sharpley, A. N. (2016). Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 9, 353–356.

    Article  CAS  Google Scholar 

  • Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., & Harrison, R. M. (2010). A European aerosol phenomenology—3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44, 1308–1320.

    Article  CAS  Google Scholar 

  • Safi, B., Saidi, M., Daoui, A., Bellal, A., Mechekak, A., & Toumi, K. (2015). The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM). Construction and Building Materials, 78, 430–438.

    Article  Google Scholar 

  • Samson, E., Marchand, J., & Snyder, K. A. (2003). Calculation of ionic diffusion coefficients on the basis of migration test results. Materials and Structures, 36, 156–165.

    Article  CAS  Google Scholar 

  • Santawee, N., Treesubsuntorn, C., & Thiravetyan, P. (2019). Lignin and holocellulose from coir pith involved in trimethylamine (fishy odor) adsorption. Journal of Environmental Sciences, 79, 43–53.

    Article  Google Scholar 

  • Shamshiri, A., Alimohammadi, V., Sedighi, M., Jabbari, E., & Mohammadi, M. (2020). Enhanced removal of phosphate and nitrate from aqueous solution using novel modified natural clinoptilolite nanoparticles: Process optimization and assessment. International Journal of Environmental Analytical Chemistry, 1–20.

  • Simpson, D., Arneth, A., Mills, G., Solberg, S., & Uddling, J. (2014). Ozone—The persistent menace: Interactions with the N cycle and climate change. Current Opinion in Environmental Sustainability, 9, 9–19.

    Article  Google Scholar 

  • Singh, A. K., Bhagowati, S., Das, T. K., Yubbe, D., Rahman, B., Nath, M., Obing, P., Singh, W. S. K., Renthlei, C. Z., Pachuau, L., & Thakur, R. (2008). Assessment of arsenic, fluoride, iron, nitrate and heavy metals in drinking water of northeastern India. ENVIS Bulletin Himalayan Ecology, 16, 1–7.

    Google Scholar 

  • Song, Y., Hahn, H. H., & Hoffmann, E. (2010). The effect of carbonate on the precipitation of calcium phosphate. Environmental Technology, 23, 207–215.

    Article  Google Scholar 

  • Taneja, P., Labhasetwar, P., Nagarnaik, P., & Ensink, J. H. (2017). The risk of cancer as a result of elevated levels of nitrate in drinking water and vegetables in Central India. Journal of Water and Health, 15, 602–614.

    Article  Google Scholar 

  • Tangboriboon, N., Kunanuruksapong, R., & Sirivat, A. (2012). Preparation and properties of calcium oxide from eggshells via calcination. Materials Science-Poland, 30, 313–322.

    Article  CAS  Google Scholar 

  • Tran, H. N., You, S. J., & Chao, H. P. (2016). Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Management & Research, 34, 129–138.

    Article  CAS  Google Scholar 

  • Van Grinsven, H. J., Rabl, A., & de Kok, T. M. (2010). Estimation of incidence and social cost of colon cancer due to nitrate in drinking water in the EU: A tentative cost-benefit assessment. Environmental Health, 9, 1–12.

    Google Scholar 

  • Vu, H. H. T., Khan, M. D., Chilakala, R., Lai, T. Q., Thenepalli, T., Ahn, J. W., & Kim, J. (2019). Utilization of lime mud waste from paper mills for efficient phosphorus removal. Sustainability, 11, 1524.

    Article  CAS  Google Scholar 

  • Wan, S., Wang, S., Li, Y., & Gao, B. (2017). Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions. Journal of Industrial and Engineering Chemistry, 47, 246–253.

    Article  CAS  Google Scholar 

  • Wang, Z., Xing, M., Fang, W., & Wu, D. (2016). One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water. Applied Surface Science, 366, 67–77.

    Article  CAS  Google Scholar 

  • Wei, Z., Xu, C., & Li, B. (2009). Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresource Technology, 100, 2883–2885.

    Article  CAS  Google Scholar 

  • Wulaningsih, W., Michaelsson, K., Garmo, H., Hammar, N., Jungner, I., Walldius, G., & Van Hemelrijck, M. (2013). Inorganic phosphate and the risk of cancer in the Swedish AMORIS study. BMC Cancer, 13, 257.

    Article  CAS  Google Scholar 

  • Xie, M., Nghiem, L. D., Price, W. E., & Elimelech, M. (2014). Impact of organic and colloidal fouling on trace organic contaminant rejection by forward osmosis: role of initial permeate flux. Desalination, 336, 146–152.

    Article  CAS  Google Scholar 

  • Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., & Duan, X. (2010). Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technology, 101, 6163–6169.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89, 1467–1471.

    Article  CAS  Google Scholar 

  • Yeom, S. H., & Jung, K. Y. (2009). Recycling wasted scallop shell as an adsorbent for the removal of phosphate. Journal of Industrial and Engineering Chemistry, 15, 40–44.

    Article  CAS  Google Scholar 

  • You, H., Li, W., Zhang, Y., Meng, Z., Shang, Z., Feng, X., & Niu, X. (2019). Enhanced removal of NO3-N from water using Fe-Al modified biochar: behavior and mechanism. Water Science and Technology, 80, 2003–2012.

    Article  Google Scholar 

  • Yu, Y., Wu, R., & Clark, M. (2010). Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell. Journal of Colloid and Interface Science, 350, 538–543.

    Article  CAS  Google Scholar 

  • Zhang, M., Gao, B., Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26–32.

    Article  CAS  Google Scholar 

  • Zhang, M., Song, G., Gelardi, D. L., Huang, L., Khan, E., Mašek, O., & Ok, Y. S. (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, 116303.

    Article  CAS  Google Scholar 

  • Zhou, X., Liu, W., Zhang, J., Wu, C., Ou, X., Tian, C., & Dang, Z. (2017). Biogenic calcium carbonate with hierarchical organic–inorganic composite structure enhancing the removal of Pb (II) from wastewater. ACS Applied Materials & Interfaces, 9, 35785–35735.

    Article  CAS  Google Scholar 

Download references

Funding

The research leading to these results received funding from King Mongkut’s University of Technology Thonburi through the Petchra Pram Jam Klao International Ph.D. Programme under Grant no. 35/ 2561.

Author information

Authors and Affiliations

Authors

Contributions

PT and RD conceived the idea and design the experiments. ZD conducted the experiments and drafted the manuscript. All the authors analysed the experimental data, discussed and finalised the manuscript.

Corresponding author

Correspondence to Paitip Thiravetyan.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4896 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daudzai, Z., Dolphen, R. & Thiravetyan, P. Simultaneous Removal of Phosphate and Nitrate from Synthetic and Real Wastewater by Meretrix lusoria as an Efficient and Novel Material. Water Air Soil Pollut 232, 186 (2021). https://doi.org/10.1007/s11270-021-05103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05103-5

Keywords

Navigation