Skip to main content
Log in

Adsorption Characteristics of Tetracycline onto Biochars as Affected by Solution Chemistry Conditions and Ball Milling Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biochars from Chinese medicine material residues and furfural residues at 300–600 °C (MBC300–MBC600 and FBC300–FBC600) were used as adsorbents for removing tetracycline (TC) from water. The influence of pH and co-existing of cations or low molecular weight organic acids (LMWOAs) was investigated on TC adsorption. Further, the bulk biochars were treated by ball milling into sub-micron particles, and their properties and adsorption performance toward TC were also characterized. For pristine biochars, TC adsorption was nonlinear and heterogeneous. Heterogeneity of biochars resulted in multiple sorption mechanisms, including H-bonding, π-π interaction, and pore filling. FBC300 and FBC600 had maximum sorption at pH 5–7. Electrostatic repulsion of positively charged biochar surfaces with TCH3+ at pH < 3 or negatively charged biochar surfaces with TCH and/or TC2− at pH > 7 was not favorable for TC removal. TC sorption decreased with increasing Na+ concentrations from 0 to 0.1 mol/L, and bivalent cations (Ca2+ and Mg2+) showed greater inhibiting effect relative to monovalent ones (Na+ and K+). The LMWOAs could combine with co-existing cations, thus reducing the inhibitory effect of cations and improving TC sorption. The ball milling caused remarkable size reduction of biochar particles, thus exposing more active surfaces to capture more TC molecules from water. This study provided low-cost and high-efficiency biochar absorbents to remove antibiotics from water and will benefit for understanding the relationship between TC sorption characteristics/mechanisms and biochar properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed, M. J., Islam, M. A., Asif, M., & Hameed, B. H. (2017). Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics. Bioresource Technology, 243, 778–784.

    CAS  Google Scholar 

  • Alatalo, S. M., Daneshvar, E., Kinnunen, N., Meščeriakovas, A., Thangaraj, S. K., Jänis, J., Tsang, D. C. W., Bhatnagar, A., & Lähde, A. (2019). Mechanistic insight into efficient removal of tetracycline from water by Fe/graphene. Chemical Engineering Journal, 373, 821–830.

    CAS  Google Scholar 

  • Antón-Herrero, R., García-Delgado, C., Alonso-Izquierdo, M., García-Rodríguez, G., Cuevas, J., & Eymar, E. (2018). Comparative adsorption of tetracyclines on biochars and stevensite: Looking for the most effective adsorbent. Applied Clay Science, 160, 162–172.

    Google Scholar 

  • Babaei, A. A., Lima, E. C., Takdastan, A., Alavi, N., Goudarzi, G., Vosoughi, M., Hassani, G., & Shirmardi, M. (2016). Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: Operational variables, kinetics, and equilibrium studies. Water Science and Technology, 74, 1202–1216.

    CAS  Google Scholar 

  • Cao, J., Xiong, Z., & Lai, B. (2018). Effect of initial pH on the tetracycline (TC) removal by zero-valent iron: Adsorption, oxidation and reduction. Chemical Engineering Journal, 343, 492–499.

    CAS  Google Scholar 

  • Castan, S., Sigmund, G., Huffer, T., & Hofmann, T. (2019). Biochar particle aggregation in soil pore water: The influence of ionic strength and interactions with pyrene. Environmental Science: Processes & Impacts, 21, 1722–1728.

    CAS  Google Scholar 

  • Chang, Z., Tian, L., Zhang, J., Zhao, Q., Li, F., Wu, M., & Pan, B. (2019). Combining bulk characterization and benzene polycarboxylic acid molecular markers to describe biochar properties. Chemosphere, 227, 381–388.

    CAS  Google Scholar 

  • Chen, T., Luo, L., Deng, S., Shi, G., Zhang, S., Zhang, Y., Deng, O., Wang, L., Zhang, J., & Wei, L. (2018). Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresource Technology, 267, 431–437.

    CAS  Google Scholar 

  • Dai, Y., Li, J., & Shan, D. (2020). Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs. Chemosphere, 238, 124432. https://doi.org/10.1016/j.chemosphere.2019.124432.

    Article  CAS  Google Scholar 

  • Dong, J., Han, R., Xu, G., Gong, L., Xing, W., & Ni, Y. (2018). Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864. Bioresource Technology, 259, 40–45.

    CAS  Google Scholar 

  • Fan, S., Wang, Y., Li, Y., Wang, Z., Xie, Z., & Tang, J. (2018). Removal of tetracycline from aqueous solution by biochar derived from rice straw. Environmental Science and Pollution Research, 25, 29529–29540.

    CAS  Google Scholar 

  • Guo, F., Dong, Y., Dong, L., & Jing, Y. (2013). An innovative example of herb residues recycling by gasification in a fluidized bed. Waste Management, 33, 825–832.

    CAS  Google Scholar 

  • Han, L., Ro, K., Sun, K., Sun, H., Wang, Z., Libra, J. A., & Xing, B. (2016). New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environmental Science & Technology, 50, 13274–13282.

    CAS  Google Scholar 

  • Higashikawa, F. S., Conz, R. F., Colzato, M., Cerri, C. E. P., & Alleoni, L. R. F. (2016). Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water. Journal of Cleaner Production, 137, 965–972.

    CAS  Google Scholar 

  • Hou, J., Wang, C., Mao, D., & Luo, Y. (2016). The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of northern China. Environmental Science and Pollution Research, 23, 1722–1731.

    CAS  Google Scholar 

  • Huang, D., Wang, X., Zhang, C., Zeng, G., Peng, Z., Zhou, J., Cheng, M., Wang, R., Hu, Z., & Qin, X. (2017). Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism. Chemosphere, 186, 414–421.

    CAS  Google Scholar 

  • Jang, H., & Kan, E. (2019). A novel hay-derived biochar for removal of tetracyclines in water. Bioresource Technology, 274, 162–172.

    CAS  Google Scholar 

  • Jia, M., Wang, F., Bian, Y., Stedtfeld, R. D., Liu, G., Yu, J., & Jiang, X. (2018). Sorption of sulfamethazine to biochars as affected by dissolved organic matters of different origin. Bioresource Technology, 248, 36–43.

    CAS  Google Scholar 

  • Khanday, W. A., & Hameed, B. H. (2018). Zeolite-hydroxyapatite-activated oil palm ash composite for antibiotic tetracycline adsorption. Fuel, 215, 499–505.

    CAS  Google Scholar 

  • Kümmerer, K. (2003). Significance of antibiotics in the environment. J Antimicrob Chemoth, 52, 5–7.

    Google Scholar 

  • Li, J., Chen, J., Lu, T., Wang, Y., Zhang, H., Shang, Z., Li, D., Zhou, Y., & Qi, Z. (2019). Effects of low-molecular weight organic acids on the transport of graphene oxide nanoparticles in saturated sand columns. Science of the Total Environment, 666, 94–102.

    CAS  Google Scholar 

  • Lian, F., Cui, G., Liu, Z., Duo, L., Zhang, G., & Xing, B. (2016). One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. Journal of Environmental Management, 176, 61–68.

    CAS  Google Scholar 

  • Liu, G., Chen, L., Jiang, Z., Zheng, H., Dai, Y., Luo, X., & Wang, Z. (2017). Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: Porosity, functional properties, and inorganic minerals. Science of the Total Environment, 607–608, 1428–1436.

    Google Scholar 

  • Liu, H., Yang, Y., Sun, H., Zhao, L., & Liu, Y. (2018a). Fate of tetracycline in enhanced biological nutrient removal process. Chemosphere, 193, 998–1003.

    CAS  Google Scholar 

  • Liu, G., Zheng, H., Zhai, X., & Wang, Z. (2018b). Characteristics and mechanisms of microcystin-LR adsorption by giant reed-derived biochars: Role of minerals, pores, and functional groups. Journal of Cleaner Production, 176, 463–473.

    CAS  Google Scholar 

  • Lu, L., Yu, W., Wang, Y., Zhang, K., Zhu, X., Zhang, Y., Wu, Y., Ullah, H., Xiao, X., & Chen, B. (2020). Application of biochar-based materials in environmental remediation: From multi-level structures to specific devices. Biochar, 2, 1–31.

    Google Scholar 

  • Luo, Y., Xu, L., Rysz, M., Wang, Y., Zhang, H., & Alvarez, P. J. J. (2011). Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science & Technology, 45, 1827–1833.

    CAS  Google Scholar 

  • Luo, J., Li, X., Ge, C., Müller, K., Yu, H., Huang, P., Li, J., Tsang, D. C. W., Bolan, N. S., Rinklebe, J., & Wang, H. (2018). Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems. Bioresource Technology, 263, 385–392.

    CAS  Google Scholar 

  • Ma, J. C., & Dougherty, D. A. (1997). The cation-π interaction. Chemical Reviews, 97, 1303–1324.

    CAS  Google Scholar 

  • Ma, C., Huang, H., Gao, X., Wang, T., Zhu, Z., Huo, P., Liu, Y., & Yan, Y. (2018). Honeycomb tubular biochar from fargesia leaves as an effective adsorbent for tetracyclines pollutants. Journal of the Taiwan Institute of Chemical Engineers, 91, 299–308.

    CAS  Google Scholar 

  • Meng, F., Yang, S., Wang, X., Chen, T., Wang, X., Tang, X., Zhang, R., & Shen, L. (2017). Reclamation of Chinese herb residues using probiotics and evaluation of their beneficial effect on pathogen infection. Journal of Infection and Public Health, 10, 749–754.

    Google Scholar 

  • Ngigi, A. N., Ok, Y. S., & Thiele-Bruhn, S. (2019). Biochar-mediated sorption of antibiotics in pig manure. Journal of Hazardous Materials, 364, 663–670.

    CAS  Google Scholar 

  • Nguyen, V. T., Nguyen, T. B., Chen, C. W., Hung, C. M., Vo, T. D. H., Chang, J. H., & Dong, C. D. (2019). Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresource Technology, 284, 197–203.

    CAS  Google Scholar 

  • O’Connor, S., & Aga, D. S. (2007). Analysis of tetracycline antibiotics in soil: Advances in extraction, clean-up, and quantification. TrAC Trends in Analytical Chemistry, 26, 456–465.

    Google Scholar 

  • Oladoja, N. A., Adelagun, R. O. A., Ahmad, A. L., Unuabonah, E. I., & Bello, H. A. (2014). Preparation of magnetic, macro-reticulated cross-linked chitosan for tetracycline removal from aquatic systems. Colloids and Surfaces B: Biointerfaces, 117, 51–59.

    CAS  Google Scholar 

  • Palominos, R. A., Mondaca, M. A., Giraldo, A., Peñuela, G., Pérez-Moya, M., & Mansilla, H. D. (2009). Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catalysis Today, 144, 100–105.

    CAS  Google Scholar 

  • Pan, M. (2020). Biochar adsorption of antibiotics and its implications to remediation of contaminated soil. Water, Air, & Soil Pollution, 231, 221.

    CAS  Google Scholar 

  • Peiris, C., Gunatilake, S. R., Mlsna, T. E., Mohan, D., & Vithanage, M. (2017). Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresource Technology, 246, 150–159.

    CAS  Google Scholar 

  • Rajput, N. (2015). Methods of preparation of nanoparticles-A review. International Journal of Advances in Engineering & Technology, 7, 1806–1811.

    Google Scholar 

  • Sanganyado, E., & Gwenzi, W. (2019). Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Science of the Total Environment, 669, 785–797.

    CAS  Google Scholar 

  • Selmi, T., Sanchez-Sanchez, A., Gadonneix, P., Jagiello, J., Seffen, M., Sammouda, H., Celzard, A., & Fierro, V. (2018). Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave Americana fibres and mimosa tannin. Industrial Crops and Products, 115, 146–157.

    CAS  Google Scholar 

  • Sun, B., Lian, F., Bao, Q., Liu, Z., Song, Z., & Zhu, L. (2016). Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole. Environmental Pollution, 214, 142–148.

    CAS  Google Scholar 

  • Tan, Z., Zhang, X., Wang, L., Gao, B., Luo, J., Fang, R., Zou, W., & Meng, N. (2019). Sorption of tetracycline on H2O2-modified biochar derived from rape stalk. Environmental Pollutants and Bioavailability, 31, 198–207.

    CAS  Google Scholar 

  • Taşkan, B., Casey, E., & Hasar, H. (2019). Simultaneous oxidation of ammonium and tetracycline in a membrane aerated biofilm reactor. Science of the Total Environment, 682, 553–560.

    Google Scholar 

  • Wang, Z., Liu, G., Zheng, H., Li, F., Ngo, H. H., Guo, W., Liu, C., Chen, L., & Xing, B. (2015a). Investigating the mechanisms of biochar's removal of lead from solution. Bioresource Technology, 177, 308–317.

    CAS  Google Scholar 

  • Wang, Y., Lu, J., Wu, J., Liu, Q., Zhangm, H., & Jin, S. (2015b). Adsorptive removal of fluoroquinolone antibiotics using bamboo biochar. Sustainability, 7, 12947–12957.

    CAS  Google Scholar 

  • Wang, F., Ren, X., Sun, H., Ma, L., Zhu, H., & Xu, J. (2016). Sorption of polychlorinated biphenyls onto biochars derived from corn straw and the effect of propranolol. Bioresource Technology, 219, 458–465.

    CAS  Google Scholar 

  • Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. (2018). Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environmental Science & Technology, 52, 5027–5047.

    CAS  Google Scholar 

  • Xu, X., Zheng, Y., Gao, B., & Cao, X. (2019). N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chemical Engineering Journal, 368, 564–572.

    CAS  Google Scholar 

  • Yang, K., & Xing, B. (2010). Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews, 110, 5989–6008.

    CAS  Google Scholar 

  • Yang, S. W., Cha, J. M., & Carlson, K. (2004). Quantitative determination of trace concentrations of tetracycline and sulfonamide antibiotics in surface water using solid-phase extraction and liquid chromatography/ion trap tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 2131–2145.

    CAS  Google Scholar 

  • Yang, X., Xu, G., Yu, H., & Zhang, Z. (2016). Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresource Technology, 211, 566–573.

    CAS  Google Scholar 

  • Zhang, G., Liu, X., Sun, K., He, F., Zhao, Y., & Lin, C. (2012). Competitive sorption of metsulfuron-methyl and tetracycline on corn straw biochars. Journal of Environmental Quality, 41, 1906–1915.

    CAS  Google Scholar 

  • Zhang, M., Li, A., Zhou, Q., Shuang, C., Zhou, W., & Wang, M. (2014). Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins. Microporous and Mesoporous Materials, 184, 105–111.

    CAS  Google Scholar 

  • Zhao, H., & Lang, Y. (2018). Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar. Journal of the Taiwan Institute of Chemical Engineers, 88, 152–160.

    Google Scholar 

  • Zietzschmann, F., Stützer, C., & Jekel, M. (2016). Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater–aligning breakthrough curves and capacities. Water Research, 92, 180–187.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (51678323), the Research Foundation for Talented Scholars of Qingdao Agricultural University (6651119010), the Support Plan on Youth Innovation Science and Technology for Higher Education of Shandong Province (2019KJD014), and the Natural Science Foundation of Shandong Province (ZR2019MD012 and ZR2017MEE013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guocheng Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Xin, Y., Yan, Q. et al. Adsorption Characteristics of Tetracycline onto Biochars as Affected by Solution Chemistry Conditions and Ball Milling Treatment. Water Air Soil Pollut 231, 387 (2020). https://doi.org/10.1007/s11270-020-04769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04769-7

Keywords

Navigation