Skip to main content

Advertisement

Log in

Copper Accumulation in Tissues of Oreochromis niloticus Exposed to Copper Oxide Nanoparticles and Copper Sulphate with Their Effect on Antioxidant Enzyme Activities in Liver

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Copper accumulation in the gill, liver, kidney, spleen, and muscle tissues of Oreochromis niloticus was determined after exposing the fish to 10, 50, and 100 μg Cu/L applied as copper sulphate (CuSO4) and copper oxide nanoparticles (CuO NPs) after 1, 7, and 15 days. Changes in the liver SOD, CAT, and GPx activities influenced by this accumulation were also studied. No mortality was observed during the experiments. Copper levels increased in the gill, liver, kidney, and spleen tissues of O. niloticus compared to control when exposed to both CuSO4 and CuO NPs, whereas no accumulation was detected in muscle tissue at the end of the exposure period. Highest accumulation of copper was observed in the order of the liver, kidney, spleen, and gill tissues, respectively. SOD, CAT, and GPx activities increased in the liver tissue at the end of the exposure period. Overall, CuO NPs are more effective than CuSO4 in terms of tissue accumulation and liver enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Khalek, A. A., Kadry, M. A. M., Badran, S. R., & Marie, M. S. (2015). Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: biochemical and oxidative stress. Journal of Basic and Applied Biology, 72, 43–57.

    Article  CAS  Google Scholar 

  • Abdel-Tawwab, M., Mousa, M. A. A., Ahmad, M. H., & Sakr, S. F. M. (2007). The use of calcium pre-exposure as a protective agent against environmental copper toxicity for juvenile Nile Tilapia, Oreochromis niloticus (L.). Aquaculture, 264(1–4), 236–246.

    Article  CAS  Google Scholar 

  • Aitken, R. J., Creely, K. S., & Tran, C. L. (2004). Nanoparticles: an occupational hygiene review (p. 91). Suffolk: Health and Safety Executive.

    Google Scholar 

  • Al-Bairuty, G. A., Shaw, B. J., Handy, R. D., & Henry, T. B. (2013). Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 126, 104–115.

    Article  CAS  Google Scholar 

  • Asagba, S. A., Eriyamremu, G. E., & Igberaese, M. E. (2008). Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiology and Biochemistry, 34, 61–69.

    Article  CAS  Google Scholar 

  • Aschberger, K., Micheletti, C., Sokull-Kluttgen, B., & Christensen, F. M. (2011). Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health lessons learned from four case studies. Environment International, 37(6), 1143–1156.

    Article  CAS  Google Scholar 

  • Ateş, M., Dugo, M. A., Demir, V., Arslan, Z., & Tchounwou, P. B. (2014). Effect of copper oxide nanoparticles to sheepshead minnow (Cyprinodon variegatus) at different salinities. Digest Journal of Nanomaterials and Biostructures., 9(1), 369–377.

    Google Scholar 

  • Bainy, A. C. D., Saito, E., Carvalho, P. S. M., & Junqueıra, V. B. C. (1996). Oxidative stress in gill, erythrocytes, liver and kidney of Nile Tilapia (Oreochromis niloticus) from a polluted site. Aquatic Toxicology, 34, 151–162.

    Article  CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P. L. (2009). Nanoparticles: their potential toxicity, waste and environmental management. Waste Management, 29, 2587–2595.

    Article  CAS  Google Scholar 

  • Chen, C., Meng, H., Xing, G., Chen, C., Zhao, Y., & Jia, G. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163, 109–120.

    Article  CAS  Google Scholar 

  • Cicik, B. (2003). Bakır-Çinko Etkileşiminin Sazan (Cyprinus carpio)’ın Karaciğer, Solungaç ve Kas Dokularındaki Metal Birikimi Üzerine Etkileri. Ekoloji, 12(48), 32–36.

    CAS  Google Scholar 

  • Cousins, R. J. (1985). Absorbtion, transport and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiological Reviews, 65(2), 238–309.

    Article  CAS  Google Scholar 

  • Daoud, A., Saud, A., Sudhir, K., Maqusood, A., & Maqsood, A. S. (2012). Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquatic Toxicology, 124(125), 83–90.

    Google Scholar 

  • Dautremepuits, C., Paris-Palacios, S., Betoulle, S., & Vernet, G. (2004). Modulation in hepatic and head kidney parameters of carp (Cyprinus carpio L.) induced by copper and chitosan. Comparative Biochemistry and Physiology Part C, 137, 325–333.

    Google Scholar 

  • De Conto Cinier, C., Ramel, M. P., Faure, R., Garin, D., & Bouvet, Y. (1999). Kinetics of Cd accumulation and elimination in carp Cyprinus carpio tissues. Comparative Biochemistry and Physiology, Part C, 122, 345–352.

    Google Scholar 

  • Deb, S.C., Fukushima, T. (1999). Metals in aquatic ecosystems: Mechanisms of uptake, accumulation and release ecotoxicological perspective. International Journal of Environmental Studies, 56(3), 385–417.

    Article  CAS  Google Scholar 

  • Doyotte, A., Cossu, C., Jacquin, M. C., Babut, M., & Vasseur, R. (1997). Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio turnidus. Aquatic Toxicology, 39, 93–110.

    Article  CAS  Google Scholar 

  • Duran, S., Tunçsoy, M., Yesilbudak, B., Ay, O., Cicik, B., & Erdem, C. (2015). Metal accumulation in various tissues of Clarias gariepinus exposed to copper, zinc, cadmium and lead singly and in mixture. Fresenius Environmental Bulletin, 24(12C), 4738–4742.

    CAS  Google Scholar 

  • Fahmy, B., & Cormier, S. A. (2009). Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology In Vitro, 23, 1365–1371.

    Article  CAS  Google Scholar 

  • Federici, G., Shaw, B. J., & Handy, R. D. (2007). Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 84(4), 415–430.

    Article  CAS  Google Scholar 

  • Fu, P. P., Xia, Q., Hwang, H. M., Ray, P. C., & Yu, H. (2014). Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of Food and Drug Analysis, 22, 64–75.

    Article  CAS  Google Scholar 

  • Galvez, F., Nebb, N., Hogstrand, C., & Wood, C. M. (1998). Zinc binding to the gills of rainbow trout: the effect of long-term exposure to sublethal zinc. Journal of Fish Biology, 52, 1089–1104.

    Article  CAS  Google Scholar 

  • Gioda, C. R., Lissner, L. A., Pretto, A., Rocha, J. B. T., Schetinger, M. R. C., Neto, J. R., Morsch, V. M., & Loro, V. L. (2007). Exposure to sublethal concentrations of Zn (II) and Cu (II) changes biochemical parameters in Leporinus obtusidens. Chemosphere, 69, 170–175.

    Article  CAS  Google Scholar 

  • Gomes, T., Pinheiro, J. P., Cancio, I., Pereira, C. G., Cardoso, C., & Bebianno, M. J. (2011). Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environmental Sciences and Technology, 45, 9356–9362.

    Article  CAS  Google Scholar 

  • Greenwald, R. A. (1985). Handbook of methods for oxygen radical research (p. 447). Boca Raton: CRC Press.

    Google Scholar 

  • Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., & Barber, D. S. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science & Technology, 41, 8178–8186.

    Article  CAS  Google Scholar 

  • Griffitt, R. J., Hyndman, K., Denslow, N. D., & Barber, D. S. (2009). Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological Sciences, 107(2), 404–415.

    Article  CAS  Google Scholar 

  • Hao, L., Chen, L., Hao, J., & Zhong, N. (2013). Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicology and Environmental Safety, 91, 52–60.

    Article  CAS  Google Scholar 

  • Heath, A. G. (1995). Water pollution and fish physiology (p. 245). Florida: CRC Press.

    Google Scholar 

  • Hollis, L., McGeer, J. C., McDonald, D. G., & Wood, C. M. (1999). Cadmium accumulation, gill Cd binding, acclimation and physiological effects during long term sublethal cd exposure in rainbow trout. Aquatic Toxicology, 46, 101–119.

    Article  CAS  Google Scholar 

  • Hollis, L., Hogstrand, C., & Wood, C. M. (2001). Tissue-specific cadmium accumulation, metallothionein induction, and tissue zinc and copper levels during chronic sublethal Cd exposure in juvenile rainbow trout. Archives of Environmental Contamination and Toxicology, 41, 468–474.

    Article  CAS  Google Scholar 

  • Johari, S. A., Kalbassi, M. R., Yu, I. J., & Lee, J. H. (2015). Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comparative Clinical Pathology, 5, 995–1007.

    Article  CAS  Google Scholar 

  • Kargın, F. (1996). Seasonal changes in levels of heavy metals in tissues of Mullus barbatus and Sparus aurata collected from Iskenderun Gulf (Turkey). Water, Air and Soil Pollution, 90, 557–562.

    Article  Google Scholar 

  • Kargın, F., & Erdem, C. (1991). Cyprinus carpio’da Bakırın Karaciğer, Dalak, Mide, Bağırsak, Solungaç ve Kas Dokularındaki Birikimi. Turkish Journal of Zoology, 15, 306–314.

    Google Scholar 

  • Kosai, P., Jiraungkoorskul, W., Thammasunthorn, T., & Jiraungkoorskul, K. (2009). Reduction of copper-induced histopathological alterations by calcium exposure in Nile Tilapia (Oreochromis niloticus). Toxicology Mechanisms and Methods, 19(6–7), 461–467.

    Article  CAS  Google Scholar 

  • Kumar, O., Sugendran, K., & Vijayaraghavan, R. (2003). Oxidative stress associated hepatic and renal toxicity induced by ricin in mice. Toxicology, 41, 333–338.

    CAS  Google Scholar 

  • Lawrence, R. A., & Burk, R. F. (1976). Glutathione peroxidase activity in selenium deficient rat liver. Biochemical and Biophysical Research Communications, 71(4), 952–958.

    Article  CAS  Google Scholar 

  • Ma, L. L., Liu, J., Li, N., Wang, J., Duan, Y. M., Yan, J. Y., Liu, H. T., Wang, H., & Hong, F. S. (2010). Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials, 31, 99–105.

    Article  CAS  Google Scholar 

  • McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244(22), 6049–6055.

    CAS  Google Scholar 

  • McGeer, J. C., Szebedinszky, C., McDonald, D. G., & Wood, C. M. (2000). Effect of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 2: tissue specific metal accumulation. Aquatic Toxicology, 50, 245–256.

    Article  CAS  Google Scholar 

  • Muramoto, S. (1983). Elimination of copper from Cu-contaminated fish by long-term exposure to EDTA and freshwater. Journal of Environmental Science Health, 18A(3), 455–461.

    Google Scholar 

  • Prousek, J. (2007). Fenton chemistry in biology and medicine. Pure and Applied Chemistry, 79, 2325–2338.

    Article  CAS  Google Scholar 

  • Ramsden, C. S., Smith, T. J., Shaw, B. S., & Handy, R. D. (2009). Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology, 18, 939–951.

    Article  CAS  Google Scholar 

  • Sakai, N., Matsui, Y., Nakayama, A., Tsuda, A., & Yoneda, M. (2011). Functional-dependent and size-dependent uptake of nanoparticles in PC12. Journal of Physics, 304, 1.

    Google Scholar 

  • Schrand, A. M., Rahman, M. F., Hussain, S. M., Schlager, J. J., Smith, D. A., & Syed, A. F. (2010). Metal-based nanoparticles and their toxicity assessment. Wiley Interdisciplinary Reviews—Nanomedicine and Nanobiotechnology, 2(5), 544–568.

    Article  CAS  Google Scholar 

  • Scown, T. M., Van Aerle, R., Johnston, B. D., Cumberland, S., Lead, J. R., Owen, R., & Tyler, C. R. (2009). High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function. Toxicological Sciences, 109, 372–380.

    Article  CAS  Google Scholar 

  • Shaw, B. J., Al-Baurity, G., & Handy, R. D. (2012). Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquatic Toxicology, 116(117), 90–101.

    Article  CAS  Google Scholar 

  • Tunçsoy, M., & Erdem, C. (2014). Accumulation of copper, zinc and cadmium in liver, gill and muscle tissues of Oreochromis niloticus exposed to these metals separately and in mixture. Fresenius Environmental Bulletin, 23(5), 1143–1149.

    Google Scholar 

  • Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178–189.

    Article  CAS  Google Scholar 

  • Viarengo, A. (1985). Biochemical effects of trace metals. Marine Pollution Bulletin, 16(4), 153–158.

    Article  CAS  Google Scholar 

  • Villarreal, F. D., Das, G. K., Abid, A., Kennedy, M., & Kultz, D. (2014). Sublethal effects of CuO nanoparticles on Mozambique Tilapia (Oreochromis mossambicus) are modulated by environmental salinity. PLoS One, 9(2), 1–15.

    Article  CAS  Google Scholar 

  • Wang, T., Long, X., Cheng, Y., Liu, Z., & Yan, S. (2015). A comparison effect of copper nanoparticles versus copper sulphate on juvenile Epinephelus coioides: growth parameters, digestive enzymes, body composition, and histology as biomarkers. International Journal of Genomics, 215, 1–10.

    Google Scholar 

  • Xiong, D., Fang, T., Yu, L., Sima, X., & Zhu, W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409, 1444–1452.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Çukurova University, Scientific Research Projects Coordination Unit and The Scientific and Technological Research Council of Turkey. We also would like to acknowledge Prof. Dr. Maria João Bebianno, Asst. Prof. Dr. Margarida Ribau Teixeira, Dr. Tânia Gomes, and Vânia Sousa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tunçsoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunçsoy, M., Erdem, C. Copper Accumulation in Tissues of Oreochromis niloticus Exposed to Copper Oxide Nanoparticles and Copper Sulphate with Their Effect on Antioxidant Enzyme Activities in Liver. Water Air Soil Pollut 229, 269 (2018). https://doi.org/10.1007/s11270-018-3913-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3913-z

Keywords

Navigation