Skip to main content
Log in

Green Silver Nanoparticles for Enhancing the Phytoremediation of Soil and Water Contaminated by Fipronil and Degradation Products

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Fipronil has been associated with neurotoxicity, carcinogenicity, endocrine disruption, persistence in soil, and low uptake by plants and is a potential groundwater contaminant. Fipronil degradation by silver nanoparticles (AgNPs) from medicinal plant extracts was investigated in spiked water. Also, remediation capacity of soil contaminated by fipronil under the combined application of green AgNPs and phytoremediation was investigated. Brassica-AgNps, Ipomoea-AgNps, Camellia-AgNps, and Plantago-AgNps in water solution significantly reduced fipronil residues by 95.45, 90.15, 63.65, and 63.48%) during 2 days of treatment as compared with 18.42% in untreated water without AgNps. Fipronil amide and fipronil-desulfenyl metabolites were detected in water under the influence of AgNps. The contribution of Brassica-AgNps, Plantago-AgNps, Ipomoea-AgNps, and Camellia-AgNps to the dissipation of fipronil in the soil were 68.8, 54.64, 43.75, and 30.99%, respectively, compared with 10.14% by Plantago major alone through 6 days. Low uptake and translocation of fipronil by P. major roots and leaves were seen in flooded soil alone or under the influence of AgNps within 6 days of treatment. However, the resulting fipronil amide product accumulates in large quantities in P. major roots and leaves. These results show that AgNps and P. major play a major role for the remediation of fipronil contaminated water and in flooded soil, while P. major played an important role for remediation the polar break product, fipronil-amide as phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Jumaily, E.F., Hassan, A.A., & Rana, H.R. (2012). Extraction and purification of tannins from Plantago lanceolata L. and assessment their antibacterial activity on pathogenesis of enteropathogenic E. coli in vitro and in vivo. DAMA Internationa1, 2319–5037.

  • Alyokhin, A., Baker, M., Mota-Sanchez, D., Dively, G.,& Grafius, E. (2008). Colorado potato beetle resistance to insecticides. Am J Pot Res 85,395–413.

  • Bar, H., Bhui, D., Sahoo, G., Sarkar, P., Pyne, S., & Misra, A. (2009). Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348(1), 212–216.

    Article  CAS  Google Scholar 

  • Bobe, A., Cooper, J. F., Coste, C. M., & Muller, M. A. (1998). Behavior of fipronil in soil under Sahelian plain field conditions. Pesticide Science, 52(3), 275–281.

    Article  CAS  Google Scholar 

  • Bonmatin, J. M., Marchand, P. A., Cotte, J. F., Aajoud, A., Casabianca, H., Goutailler, G., & Courtiade, M. (2007). Bees and systemic insecticides (imidacloprid, fipronil) in pollen: subnano-quantification by HPLC/MS/MS and GC/MS. In D. R. AAM, E. Capri, & T. M. Fragoulis (Eds.), Environmental fate and ecological effects of pesticide (pp. 827–824). Pavia: La Goliardica Pavese.

    Google Scholar 

  • Bootharaju, M. S., & Pradeep, T. (2012). Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir, 28, 2671–2679.

    Article  CAS  Google Scholar 

  • Chandran, S. P., Minakshi, C., Renu, P., Absar, A., & Murali, S. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22, 577–583.

    Article  CAS  Google Scholar 

  • Chauzat, M. P., Martel, A. C., Cougoule, N., Porta, P., & Lachaize, J. (2011). An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presence in continental France. Environmental Toxicology and Chemistry, 30, 103–111.

    Article  CAS  Google Scholar 

  • Comfort, S. D., Shea, P. J., Machacek, T. A., Gaber, H., & Oh, B. T. (2001). Field-scale remediation of a metolachlor-contaminated spill site using zerovalent iron. Journal of Environmental Quality, 30, 1636–1643.

    Article  CAS  Google Scholar 

  • Daniel, S. C., Banub, B., Harshinyc, M., Nehrud, K., Ganeshb, P., Kumaranb, S., & Sivakumar, M. (2014). Ipomea carnea-based silver nanoparticle synthesis for antibacterial activity against selected human pathogens. Journal of Experimental Nanoscience, 9, 197–209.

    Article  CAS  Google Scholar 

  • De Balogh, K., Dimande, A. P., Lugt, J. J., Molyneux, R. J., Naude, T. W., & Welman, W. G. (1999). A lysosomal storage disease induced by Ipomoea carnea in goats in Mozambique. Journal of Veterinary Diagnostic Investigation, 11, 266–273.

    Article  Google Scholar 

  • Dieckmann, Y., Ishaque, M., Muenster, I., Picard, L., & Benz, A. (2010). Systemicity enhancers. Patent No. US 2010/0204045 A1. 1–21 DoW Agro Sciences (2013) DoW AgroSciences receives US EPA Registration for Sulfoxaflor.

  • El-Temsah, Y. S., & Joner, E. J. (2013). Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere, 92(1), 131–137.

    Article  CAS  Google Scholar 

  • Gan, J., Bondarenko, S., Oki, L., Haver, D., & Li, J. X. (2012). Occurrence of fipronil and its biologically active derivatives in urban residential runoff. Environ Sci Technol, 46, 1489–1495.

    Article  CAS  Google Scholar 

  • Ghaffari-Moghaddam, M., & Hadi-Dabanlou, R. (2014). Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. Journal of Industrial and Engineering Chemistry, 20(2), 739–744.

    Article  CAS  Google Scholar 

  • Gunasekara, A. S., Tresca, T., Kean, S., Frank, S. V., & Ronald, S. (2007). Environmental fate and toxicology of fipronil. Journal of Pesticide Science, 32(3), 189–199.

    Article  CAS  Google Scholar 

  • Harris, R. S.(2004). The fate of bifenthrin and Fipronil in pine bark nursery media. Louisiana State University. A Thesis. August 2004.

  • Hendrix, K. M., Morra, M. J., Lee, H. B., & Min, S. C. (2012). Defatted mustard seed meal-based biopolymer film development. Food Hydrocolloids, 26, 118–125.

    Article  CAS  Google Scholar 

  • Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y. (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18, 10 Article ID 105104.

  • Huo, Y., Singh, P., Kim, Y. J., Soshnikova, V., Kang, J., Markus, J., Ahn, S., Castro-Aceituno, V., Mathiyalagan, R., Chokkalingam, M., Bae, K. S., & Yang, D. C. (2017). Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and in vitro applications. Artif Cells, Nanomedicine, Biotechnol, 4, 1–13.

    Article  CAS  Google Scholar 

  • Kim, S. C., Yang, J. E., Ok, Y. S., Skousen, J., Kim, D. G., & Joo, J. H. (2010). Accelerated metolachlor degradation in soil by zerovalent iron and compost amendments. Bulletin of Environmental Contamination and Toxicology, 84(4), 459–464.

    Article  CAS  Google Scholar 

  • Kobeasy, O., Abdel-Fatah, M., Samiha, M., Abd El-Salam, Z., & El-Ola, M. M. (2011). Biochemical studies on Plantago major L. and Cyamopsis tetragonoloba L. Int J Biodvers Conserv, 3, 83–91.

    Google Scholar 

  • Leela, A., & Vivekanandan, M. (2008). Tapping the unexploited plant resources for the synthesis of silver nanoparticles. African Journal of Biotechnology, 7(17), 3162–3165.

    Google Scholar 

  • Lee, S. J., Mulay, P., Diebolt-Brown, B., Lackovic, M. J., Mehler, L. N., Beckman, J., Waltz, J., Prado, J. B., Mitchell, Y. A., Higgins, S. A., Schwartz, A., & Calvert, G. M. (2010). Acute illnesses associated with exposure to fipronil—surveillance data from 11 states in the United States, 2001–2007. Clinical Toxicology, 48, 737–744.

    Article  Google Scholar 

  • Li, S., Shen, Y., Xie, A., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9, 852–858.

    Article  CAS  Google Scholar 

  • Li M, Puyu L, Lin W, Mengyuan F, & Lijun H (2015) Determination and dissipation of fipronil and its metabolites in peanut and soil. Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036.

  • Makarov, V., Love, A., Sinitsyna, O., Yaminsky, S. M., Taliansky, M., & Kalinina, N. (2014). Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6(1), 35–44.

    CAS  Google Scholar 

  • Manimegalai, G., Shanthakumar, S., & Chandan, S. (2012), Pesticide mineralization in water using silver nanoparticles incorporated on polyurethane foam. International Journal of Science and Research (IJSR).1, (3) December.

  • Manimegalai, G., Shanthakumar, S., & Chandan, S. (2014). Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support. Int Nano Lett, 4(105).

  • Mariod, A., Ibrahim, R. M., Ismail, M., & Ismail, N. (2009). Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chemistry, 116, 306–312.

    Article  CAS  Google Scholar 

  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356.

    Article  CAS  Google Scholar 

  • Mittal, A. K., Bhaumik, J., Kumar, S., & Banerjee, U. C. (2014). Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. Journal of Colloid and Interface Science, 415, 39–47.

    Article  CAS  Google Scholar 

  • Ndikau, M., Naumih, M. N., Dickson, M. A., & Eric, M. (2017). Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract. International Journal of Analytical Chemistry, 2017(8108504), 9. https://doi.org/10.1155/2017/8108504.

    Article  CAS  Google Scholar 

  • Ohi, M., Dalsente, R. P. R., Andrade, A. J. M., & Nascimento, A. J. (2004). Reproductive adverse effects of fipronil in Wistar rats. Toxicology Letters, 146(2), 121–127.

    Article  CAS  Google Scholar 

  • Okumura, F., Raquel, B., Ednilsom, O., Albérico, B., & Luiz, H. (2016). Electrochemical and quantum chemical investigations of the insecticide fipronil. Journal of the Brazilian Chemical Society, 27, 925–932.

    CAS  Google Scholar 

  • Pei, Z., Yitong, L., Baofeng, L., & Gan, J. J. (2004). Dynamics of fipronil residue in vegetable field ecosystem. Chemosphere, 57, 1691–1696.

    Article  CAS  Google Scholar 

  • Philip, D., Unni, C., Aromal, S. A., & Vidhu, V. (2011). Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(2), 899–904.

    Article  CAS  Google Scholar 

  • Raquel, P., Tercariol, G., & Godinho, A. F. (2011). Behavioral effects of acute exposure to the insecticide fipronil. Pesticide Biochemistry and Physiology, 99, 221–225.

    Article  CAS  Google Scholar 

  • Raveton, M., Aajoud, A., Willison, J., Cherifi, M., Tissut, M., & Ravanel, P. (2007). Soil distribution of fipronil and its metabolites originating from a seed-coated formulation. Chemosphere, 69(7), 1124–1129.

    Article  CAS  Google Scholar 

  • Shuai, X., Jingyu, C., & Chittaranjan, R. (2011). Adsorption, transport and degradation of fipronil termiticide in three Hawaii soils. Pest Management Science, 68, 731–739.

    Article  CAS  Google Scholar 

  • Simbaya, J., Slominski, B. A., Rakow, G., Campbell, L. D., Keith, R., Downey, R., & Bell, J. M. (1995). Quality characteristics of yellow-seeded Bmmica seed meals: protein, carbohydrates and dietary fibre components. Journal Science Food Agriculture Chemistry, 43, 2062–2066.

    Article  CAS  Google Scholar 

  • Subha, V., Kirubanandan, S., & Renganathan, S. (2016). Green synthesis of silver nanoparticles from a novel medicinal plant source roots extract of Mukia maderaspatana. Colloid and Surface Science, 1(1), 14–17.

    Google Scholar 

  • US Environmental Protection Agency (1996). Partition coefficient (N-octanol/water) estimation by liquid chromatography: U.S. EPA Office of Prevention, Pesticides, and Toxic Substances, accessed October 15, 2002, at URL http://www.epa.gov/docs/OPPTS_Harmonized/830_Product_Properties_Test_Guidelines/ Series/830–7570.pdf.

  • Vilchis-Nestor, A. R., Sánchez-Mendieta, V. S., Camacho-L’opez, M. A., G’omez-Espinosa, R.M., Camacho-L’opez, M. A., & Arenas-Alatorre, J.A. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract, Materials Letters, 62, 17-183103–3105.

  • Von White, G., Kerscher, P., Brown, R. M., Morella, J. D., McAllister, W., Dean, D., & Kitchens, C. L. (2012). Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. Journal of Nanomaterials, 2012(730746), 12.

    Google Scholar 

  • Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ, 466, 210–213.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is most grateful to Professor Dr. Mustafa Abdel-Rahim, director of the Central Laboratory for soil, food, and feedstuffs ISO-17025, and the Faculty of Development and Technology, Zagazig University, Zagazig, Egypt, for their collaboration in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ali Ali Romeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeh, A.A.A. Green Silver Nanoparticles for Enhancing the Phytoremediation of Soil and Water Contaminated by Fipronil and Degradation Products. Water Air Soil Pollut 229, 147 (2018). https://doi.org/10.1007/s11270-018-3792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3792-3

Keywords

Navigation