Skip to main content
Log in

Coal-Based Carbon Membrane Coupled with Electrochemical Oxidation Process for the Enhanced Microalgae Removal from Simulated Ballast Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A treatment system combining the coal-based carbon membrane with electrochemical oxidation process was designed for the enhanced microalgae removal from simulated ballast water. The effects of various parameters including microalgae species, microalgae density, electric field intensity, and electrical conductivity on the separation performance were carried out. Fouling test was further performed for assessing the antifouling ability of the treatment system. The results showed big microalgae species tended to form a thick fouling layer on the carbon membrane, resulting in low permeate flux. High microalgae density gave rise to serious membrane fouling, which decreases the permeate flux. The treatment system showed enhanced permeate flux and fouling resistance by coupling with electrochemical oxidation process. High conductivity favored the electrochemical reactions on the surface of the carbon membrane, which reduces the clogging of the microalgae to the carbon membrane. After cleaning, the treatment system still kept high permeate flux, implying its good regeneration ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahsani, M., & Yegani, R. (2015). Study on the fouling behavior of silica nanocomposite modified polypropylene membrane in purification of collagen protein. Chemical Engineering Research and Design, 102, 261–273.

    Article  CAS  Google Scholar 

  • Babel, S., & Takizawa, S. (2011). Chemical pretreatment for reduction of membrane fouling caused by algae. Desalination, 274, 171–176.

    Article  CAS  Google Scholar 

  • Castaing, J. B., Massé, A., Pontié, M., Séchet, V., Haure, J., & Jaouen, P. (2010). Investigating submerged ultrafiltration (UF) and microfiltration (MF) membranes for seawater pre-treatment dedicated to total removal of undesirable micro-algae. Desalination, 253, 71–77.

    Article  CAS  Google Scholar 

  • Chen, J. P., Kim, S. L., & Ting, Y. P. (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science, 219, 27–45.

    Article  CAS  Google Scholar 

  • Delacroix, S., Vogelsang, C., Tobiesen, A., & Liltved, H. (2013). Disinfection by-products and ecotoxicity of ballast water after oxidative treatment––results and experiences from seven years of full-scale testing of ballast water management systems. Marine Pollution Bulletin, 73, 24–36.

    Article  CAS  Google Scholar 

  • Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2016). Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: nutrients removal, biomass and lipid production. Bioresource Technology, 200, 279–286.

    Article  Google Scholar 

  • Gregg, M. D., & Hallegraeff, G. M. (2007). Efficacy of three commercially available ballast water biocides against vegetative microalgae, dinoflagellate cysts and bacteria. Harmful Algae, 6, 567–584.

    Article  CAS  Google Scholar 

  • Guilbaud, J., Massé, A., Wolff, F. C., & Jaouen, P. (2015). Porous membranes for ballast water treatment from microalgae-rich seawater. Marine Pollution Bulletin, 101, 612–617.

    Article  CAS  Google Scholar 

  • Hua, L., Guo, L., Thakkar, M., Wei, D., Agbakpe, M., Kuang, L., Magpile, M., Chaplin, B. P., Tao, Y., Shuai, D., Zhang, X., Mitra, S., & Zhang, W. (2016). Effects of anodic oxidation of a substoichiometric titanium dioxide reactive electrochemical membrane on algal cell destabilization and lipid extraction. Bioresource Technology, 203, 112–117.

    Article  CAS  Google Scholar 

  • Huang, W., Chu, H., Dong, B., Hu, M., & Yu, Y. (2015). A membrane combined process to cope with algae blooms in water. Desalination, 355, 99–109.

    Article  CAS  Google Scholar 

  • Jafarzadeh, Y., & Yegani, R. (2015). Analysis of fouling mechanisms in TiO2 embedded high density polyethylene membranes for collagen separation. Chemical Engineering Research and Design, 93, 684–695.

    Article  CAS  Google Scholar 

  • Jafarzadeh, Y., Yegani, R., & Sedaghat, M. (2014). Preparation, characterization and fouling analysis of ZnO/polyethylene hybrid membranes for collagen separation. Chemical Engineering Research and Design, 94, 417–427.

    Article  Google Scholar 

  • Jagannadh, S. N., & Muralidhara, H. S. (1996). Electrokinetics methods to control membrane fouling. Industrial and Engineering Chemistry Research, 35, 1133–1140.

    Article  CAS  Google Scholar 

  • Kanchanatip, E., Su, B. R., Tulaphol, S., Den, W., Grisdanurak, N., & Kuo, C. C. (2016). Fouling characterization and control for harvesting microalgae Arthrospira (Spirulina) maxima using a submerged, disc-type ultrafiltration membrane. Bioresource Technology, 209, 23–30.

    Article  CAS  Google Scholar 

  • Kim, E. C., Oh, J. H., & Lee, S. G. (2016). Consideration on the maximum allowable dosage of active substances produced by ballast water management system using electrolysis. International Journal of e-Navigation and Maritime Economy, 4, 88–96.

    Article  Google Scholar 

  • Liang, H., Gong, W., Chen, J., & Li, G. (2008). Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment. Desalination, 220, 267–272.

    Article  CAS  Google Scholar 

  • Matzinos, P., & Álvarez, R. (2002). Effect of ionic strength on rinsing and alkaline cleaning of ultrafiltration inorganic membranes fouled with whey proteins. Journal of Membrane Science, 208, 23–30.

    Article  CAS  Google Scholar 

  • Perrins, J. C., Cordell, J. R., Ferm, N. C., Grocock, J. L., & Herwig, R. P. (2006). Mesocosm experiments for evaluating the biological efficacy of ozone treatment of marine ballast water. Marine Pollution Bulletin, 52, 1756–1767.

    Article  CAS  Google Scholar 

  • Ra, C. H., Kang, C. H., Jung, J. H., Jeong, G. T., & Kim, S. K. (2016). Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource Technology, 212, 254–261.

    Article  CAS  Google Scholar 

  • Ravanchi, M. T., Kaghazchi, T., & Kargari, A. (2009). Application of membrane separation processes in petrochemical industry: a review. Desalination, 235, 199–244.

    Article  Google Scholar 

  • Rigby, G. R., Hallegraeff, G. M., & Sutton, C. A. (1999). Novel ballast water heating technique offers cost-effective treatment to reduce the risk of global transport of harmful marine organisms. Marine Ecology Progress Series, 191, 289–293.

    Article  Google Scholar 

  • Rossi, N., Jaouen, P., Legentilhomme, P., & Petit, I. (2004). Harvesting of cyanobacterium Arthrospira platensis using organic filtration membranes. Separation Science and Technology, 82, 244–250.

    Google Scholar 

  • Salahi, A., Noshadi, I., Badrnezhad, R., Kanjilal, B., & Mohammadi, T. (2013). Nano-porous membrane process for oily waste-water treatment: optimization using response surface methodology. Journal of Environmental Chemical Engineering, 1, 218–225.

    Article  CAS  Google Scholar 

  • Sarkar, B., Pal, S., Ghosh, T. B., De, S., & Dasgupta, S. (2008). A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition. Journal of Membrane Science, 311, 112–120.

    Article  CAS  Google Scholar 

  • Song, C., Wang, T., Pan, Y., & Qiu, J. (2006). Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment. Separation and Purification Technology, 51, 80–84.

    Article  CAS  Google Scholar 

  • Song, C., Wang, T., Qiu, J., Cao, Y., & Cai, T. (2008). Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes. Journal of Porous Materials, 15, 1–6.

    Article  CAS  Google Scholar 

  • Tamburri, M. N., Wasson, K., & Matsuda, M. (2002). Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion. Biological Conservation, 103, 331–341.

    Article  Google Scholar 

  • Tang, Z., Butkus, M. A., & Xie, Y. F. (2009). Enhanced performance of crumb rubber filtration for ballast water treatment. Chemosphere, 74, 1396–1399.

    Article  CAS  Google Scholar 

  • Waite, T. D., Kazumi, J., Lane, P. V. Z., Farmer, L. L., Smith, S. G., Smith, S. L., Hitchcock, G., & Capo, T. R. (2003). Removal of natural populations of marine plankton by a large-scale ballast water treatment system. Marine Ecology Progress Series, 258, 51–63.

    Article  CAS  Google Scholar 

  • Wang, H., Guan, Q., Li, J., & Wang, T. (2014). Phenolic wastewater treatment by an electrocatalytic membrane reactor. Catalysis Today, 236, 121–126.

    Article  Google Scholar 

  • Weng, Y. H., Li, K. C., Chaung-Hsieh, L. H., & Huang, C. P. (2006). Removal of humic substances (HS) from water by electro-microfiltration (EMF). Water Research, 40, 1783–1794.

    Article  CAS  Google Scholar 

  • Xu, L., Du, L., Wang, C., & Xu, W. (2012). Nanofiltration coupled with electrolytic oxidation in treating simulated dye wastewater. Journal of Membrane Science, 409–410, 329–334.

    Article  Google Scholar 

  • Zhang, N., Ma, B., Li, J., & Zhang, Z. (2013). Factors affecting formation of chemical by-products during ballast water treatment based on an advanced oxidation process. Chemical Engineering Journal, 231, 427–433.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21476034, 21676044, and 21276035), State Key Laboratory of Separation Membranes and Membrane Processes (Tianjin Polytechnic University) (no. M2-201509), ‘123’ Project of China Environment Protection Foundation (CEPF2014-123-2-16), and the Fundamental Research Funds for the Central Universities (3132016327).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengwen Song or Tonghua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, P., Xu, Y., Zhou, Y. et al. Coal-Based Carbon Membrane Coupled with Electrochemical Oxidation Process for the Enhanced Microalgae Removal from Simulated Ballast Water. Water Air Soil Pollut 228, 421 (2017). https://doi.org/10.1007/s11270-017-3608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3608-x

Keywords

Navigation