Skip to main content
Log in

Removal of Diclofenac, Ketoprofen, and Carbamazepine from Simulated Drinking Water by Advanced Oxidation in a Model Reactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this study was to examine the degradation of pharmaceutical compounds diclofenac, ketoprofen, and carbamazepine in a bench-scale batch type advanced oxidation treatment system combining non-thermal plasma and UV photocatalysis. The key factors affecting pollutant decomposition were studied in a dielectric barrier discharge (DBD) plasma reactor. This was followed by the comparative assessment of various advanced oxidation processes (O3; UV+O3; TiO2+O3; TiO2+UV+O3) in a UV-photocatalysis reactor. The overall effectiveness of the treatment process was established according to the decomposition efficiency of the individual compound determined by high-performance liquid chromatography with ultraviolet detection (HPLC/UV), removal of total organic carbon (TOC), energy consumption, and acute toxicity test with Chironomus sp. larvae. Depending on the pharmaceutical compound and oxidation system, complete decomposition of the target compound was reached within 3–6 min. The TOC removal ranged between 25 and 100% with energy consumption varying 3.1–10.6 MJ/g. TiO2+UV+O3 revealed slightly higher toxicity of treated water as compared to TiO2+O3 (22–50% vs 17–33% mortality rate of Chironomus sp. larvae). TiO2+O3 and TiO2+UV+O3 systems proved as an efficient combination of AO processes for the decomposition of pharmaceuticals in water, as long as the treatment duration is sufficient to fully mineralize organic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antoniou, M. G., Hey, G., Rodríguez Vega, S., Spiliotopoulou, A., Fick, J., Tysklind, M., et al. (2013). Required ozone doses for removing pharmaceuticals from wastewater effluents. Science of the Total Environment, 456–457, 42–49. doi:10.1016/j.scitotenv.2013.03.072.

    Article  Google Scholar 

  • Beltrán, F. J., Rivas, F. J., & Montero-de-Espinosa, R. (2002). Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Applied Catalysis B: Environmental, 39(3), 221–231. doi:10.1016/S0926-3373(02)00102-9.

    Article  Google Scholar 

  • Cai YX, Zhang LF, Wang J, et al (2010). Measuring DBD main discharge parameters using Q-V Lissajous figures. Asia-Pacific Power Energy Eng Conf APPEEC 1–4. doi:10.1109/APPEEC.2010.5449431

  • Cataldo, S., Iannì, A., Loddo, V., Mirenda, E., Palmisano, L., Parrino, F., & Piazzese, D. (2016). Combination of advanced oxidation processes and active carbons adsorption for the treatment of simulated saline wastewater. Separation and Purification Technology, 171, 101–111. doi:10.1016/j.seppur.2016.07.026.

    Article  CAS  Google Scholar 

  • Cesaro, A., Naddeo, V., & Belgiorno, V. (2013). Wastewater treatment by combination of advanced oxidation processes and conventional biological systems. Journal of Bioremediation & Biodegradation, 4(8). doi:10.4172/2155-6199.1000208.

  • Cunningham, V. L., Buzby, M., Hutchinson, T., Mastrocco, F., Parke, N., & Roden, N. (2006). Effects of human pharmaceuticals on aquatic life: next steps. Environmental Science & Technology, 40(11), 3456–3462. doi:10.1021/es063017b.

    Article  CAS  Google Scholar 

  • Czech, B., Jośko, I., & Oleszczuk, P. (2014). Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and Environmental Safety, 104, 247–253. doi:10.1016/j.ecoenv.2014.03.024.

    Article  CAS  Google Scholar 

  • Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for advanced oxidation processes. Journal of Environmental Management, 195, 93–99. doi:10.1016/j.jenvman.2017.04.010.

    Article  CAS  Google Scholar 

  • Fatta-Kassinos, D., Meric, S., & Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399(1), 251–275. doi:10.1007/s00216-010-4300-9.

    Article  CAS  Google Scholar 

  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159. doi:10.1016/j.aquatox.2005.09.009.

    Article  CAS  Google Scholar 

  • Fram, M. S., & Belitz, K. (2011). Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Science of the Total Environment, 409(18), 3409–3417. doi:10.1016/j.scitotenv.2011.05.053.

    Article  CAS  Google Scholar 

  • Ha, H., Mahanty, B., Yoon, S., & Kim, C.-G. (2016). Degradation of the long-resistant pharmaceutical compounds carbamazepine and diatrizoate using mixed microbial culture. Journal of Environmental Science and Health, Part A, 51(6), 467–471. doi:10.1080/10934529.2015.1128712.

    Article  CAS  Google Scholar 

  • Hernando, M. D., Mezcua, M., Fernández-Alba, A. R., & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), 334–342. doi:10.1016/j.talanta.2005.09.037.

    Article  CAS  Google Scholar 

  • Huber, M. M., GÖbel, A., Joss, A., Hermann, N., LÖffler, D., McArdell, C. S., et al. (2005). Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. doi:10.1021/ES048396S.

    Google Scholar 

  • Hübner, U., Seiwert, B., Reemtsma, T., & Jekel, M. (2014). Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment—indications from column experiments. Water Research, 49, 34–43. doi:10.1016/j.watres.2013.11.016.

    Article  Google Scholar 

  • Huerta-Fontela, M., Galceran, M. T., & Ventura, F. (2011). Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Research, 45(3), 1432–1442. doi:10.1016/j.watres.2010.10.036.

    Article  CAS  Google Scholar 

  • Illés, E., Szabó, E., Takács, E., Wojnárovits, L., Dombi, A., & Gajda-Schrantz, K. (2014). Ketoprofen removal by O3 and O3/UV processes: kinetics, transformation products and ecotoxicity. Science of the Total Environment, 472, 178–184. doi:10.1016/j.scitotenv.2013.10.119.

    Article  Google Scholar 

  • Jelic, A., Michael, I., Achilleos, A., Hapeshi, E., Lambropoulou, D., Perez, S., et al. (2013). Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment. Journal of Hazardous Materials, 263, 177–186. doi:10.1016/j.jhazmat.2013.07.068.

    Article  CAS  Google Scholar 

  • Jiang, B., Zheng, J., Qiu, S., Wu, M., Zhang, Q., Yan, Z., & Xue, Q. (2014). Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 236, 348–368. doi:10.1016/j.cej.2013.09.090.

    Article  CAS  Google Scholar 

  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013–1021. doi:10.1016/j.watres.2006.06.034.

    Article  CAS  Google Scholar 

  • Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35(2), 402–417. doi:10.1016/j.envint.2008.07.009.

    Article  CAS  Google Scholar 

  • Krugly, E., Martuzevicius, D., Tichonovas, M., Jankunaite, D., Rumskaite, I., Sedlina, J., et al. (2015). Decomposition of 2-naphthol in water using a non-thermal plasma reactor. Chemical Engineering Journal, 260, 188–198. doi:10.1016/j.cej.2014.08.098.

    Article  CAS  Google Scholar 

  • Magureanu, M., Mandache, N. B., & Parvulescu, V. I. (2015). Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Research, 81, 124–136. doi:10.1016/j.watres.2015.05.037.

    Article  CAS  Google Scholar 

  • Matamoros, V., Duhec, A., Albaigés, J., & Bayona, J. M. (2009). Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17α-ethinylestradiol in fresh and seawater. Water, Air, and Soil Pollution, 196(1–4), 161–168. doi:10.1007/s11270-008-9765-1.

    Article  CAS  Google Scholar 

  • Mehrjouei, M., Müller, S., & Möller, D. (2015). A review on photocatalytic ozonation used for the treatment of water and wastewater. Chemical Engineering Journal, 263, 209–219. doi:10.1016/j.cej.2014.10.112.

    Article  CAS  Google Scholar 

  • Mohapatra, D. P., Brar, S. K., Tyagi, R. D., Picard, P., & Surampalli, R. Y. (2014). Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine. Science of the Total Environment, 470–471, 58–75. doi:10.1016/j.scitotenv.2013.09.034.

    Article  Google Scholar 

  • Moreira, F. C., Soler, J., Alpendurada, M. F., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2016). Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes. Water Research, 105, 251–263. doi:10.1016/j.watres.2016.08.036.

    Article  CAS  Google Scholar 

  • MORROW, J., ALMEIDA, J., FITZGERALD, L., & COLE, K. (2008). Association and decontamination of Bacillus spores in a simulated drinking water system. Water Research, 42(20), 5011–5021. doi:10.1016/j.watres.2008.09.012.

    Article  CAS  Google Scholar 

  • Nikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 387(4), 1225–1234. doi:10.1007/s00216-006-1035-8.

    Article  CAS  Google Scholar 

  • Oetken, M., Nentwig, G., Löffler, D., Ternes, T., & Oehlmann, J. (2005). Effects of pharmaceuticals on aquatic invertebrates. Part I. The antiepileptic drug carbamazepine. Archives of Environmental Contamination and Toxicology, 49(3), 353–361. doi:10.1007/s00244-004-0211-0.

    Article  CAS  Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(20), 4141–4166. doi:10.1016/j.scitotenv.2010.08.061.

    Article  CAS  Google Scholar 

  • Oturan, M. A., & Aaron, J.-J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. doi:10.1080/10643389.2013.829765.

    Article  CAS  Google Scholar 

  • Pal, A., Gin, K. Y.-H., Lin, A. Y.-C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. doi:10.1016/j.scitotenv.2010.09.026.

    Article  CAS  Google Scholar 

  • Pedrouzo, M., Borrull, F., Pocurull, E., & Marcé, R. M. (2011). Presence of pharmaceuticals and hormones in waters from sewage treatment plants. Water, Air, & Soil Pollution, 217(1–4), 267–281. doi:10.1007/s11270-010-0585-8.

    Article  CAS  Google Scholar 

  • Pekárek, S., & Mikeš, J. (2014). Temperature-and airflow-related effects of ozone production by surface dielectric barrier discharge in air. The European Physical Journal D, 68(10), 310. doi:10.1140/epjd/e2014-50393-x.

    Article  Google Scholar 

  • Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. doi:10.1016/j.watres.2014.08.053.

    Article  CAS  Google Scholar 

  • Ratola, N., Cincinelli, A., Alves, A., & Katsoyiannis, A. (2012). Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. Journal of Hazardous Materials, 239, 1–18. doi:10.1016/j.jhazmat.2012.05.040.

    Article  Google Scholar 

  • Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268–1287. doi:10.1016/j.chemosphere.2013.07.059.

    Article  CAS  Google Scholar 

  • Rizzo, L., Meric, S., Kassinos, D., Guida, M., Russo, F., & Belgiorno, V. (2009). Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Research, 43(4), 979–988. doi:10.1016/j.watres.2008.11.040.

    Article  CAS  Google Scholar 

  • Rozas, O., Vidal, C., Baeza, C., Jardim, W. F., Rossner, A., & Mansilla, H. D. (2016). Organic micropollutants (OMPs) in natural waters: oxidation by UV/H2O2 treatment and toxicity assessment. Water Research, 98, 109–118. doi:10.1016/j.watres.2016.03.069.

    Article  CAS  Google Scholar 

  • Sacher, F., Lange, F. T., Brauch, H.-J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. Journal of Chromatography A, 938(1), 199–210. doi:10.1016/S0021-9673(01)01266-3.

    Article  CAS  Google Scholar 

  • Salgado, R., Pereira, V. J., Carvalho, G., Soeiro, R., Gaffney, V., Almeida, C., et al. (2013). Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. Journal of Hazardous Materials, 244–245, 516–527. doi:10.1016/j.jhazmat.2012.10.039.

    Article  Google Scholar 

  • Szabó, R. K., Megyeri, C., Illés, E., Gajda-Schrantz, K., Mazellier, P., & Dombi, A. (2011). Phototransformation of ibuprofen and ketoprofen in aqueous solutions. Chemosphere, 84(11), 1658–1663. doi:10.1016/j.chemosphere.2011.05.012.

    Article  Google Scholar 

  • Tichonovas, M., Krugly, E., Racys, V., Hippler, R., Kauneliene, V., Stasiulaitiene, I., & Martuzevicius, D. (2013). Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment. Chemical Engineering Journal, 229, 9–19. doi:10.1016/j.cej.2013.05.095.

    Article  CAS  Google Scholar 

  • Tijani, J. O., Fatoba, O. O., & Petrik, L. F. (2013). A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water, Air, & Soil Pollution, 224(11), 1770. doi:10.1007/s11270-013-1770-3.

    Article  Google Scholar 

  • Tijani, J. O., Fatoba, O. O., Madzivire, G., & Petrik, L. F. (2014). A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water, Air, & Soil Pollution, 225(9), 2102. doi:10.1007/s11270-014-2102-y.

    Article  Google Scholar 

  • Vona, A., di Martino, F., Garcia-Ivars, J., Picó, Y., Mendoza-Roca, J.-A., & Iborra-Clar, M.-I. (2015). Comparison of different removal techniques for selected pharmaceuticals. Journal of Water Process Engineering, 5, 48–57. doi:10.1016/j.jwpe.2014.12.011.

    Article  Google Scholar 

  • Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of Environmental Management, 182, 620–640. doi:10.1016/j.jenvman.2016.07.049.

    Article  CAS  Google Scholar 

  • WANG, J. L., & XU, L. J. (2012). Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325. doi:10.1080/10643389.2010.507698.

    Article  Google Scholar 

  • Wei, C., Zhang, F., Hu, Y., Feng, C., Wu, H., Siegrist, H., et al. (2017). Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Reviews in Chemical Engineering, 33(1), 1014–1022. doi:10.1515/revce-2016-0008.

    Article  Google Scholar 

  • Weltje, L., Rufli, H., Heimbach, F., Wheeler, J., Vervliet-Scheebaum, M., & Hamer, M. (2007). The chironomid acute toxicity test: development of a new test system. Integrated Environmental Assessment and Management, preprint(2009), 1. doi:10.1897/IEAM_2009-069.1.

  • Yang, G. C. C. (2017). Global challenges and solutions of emerging contaminants: an editorial overview and beyond. Chemosphere, 168, 1222–1229. doi:10.1016/j.chemosphere.2016.10.076.

    Article  CAS  Google Scholar 

  • Yang, Y., Ok, Y. S., Kim, K.-H., Kwon, E. E., & Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Science of the Total Environment, 596–597, 303–320. doi:10.1016/j.scitotenv.2017.04.102.

    Article  Google Scholar 

  • Yen, H. Y., & Kang, S. F. (2016). Effect of organic molecular weight on mineralization and energy consumption of humic acid by H2O2/UV oxidation. Environmental Technology, 37(17), 2199–2205. doi:10.1080/09593330.2016.1146337.

    Article  CAS  Google Scholar 

  • Yu, H., Nie, E., Xu, J., Yan, S., Cooper, W. J., & Song, W. (2013). Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments. Water Research, 47(5), 1909–1918. doi:10.1016/j.watres.2013.01.016.

    Article  CAS  Google Scholar 

  • Zhang, F., Yediler, A., Liang, X., & Kettrup, A. (2004). Effects of dye additives on the ozonation process and oxidation by-products: a comparative study using hydrolyzed CI reactive red 120. Dyes and Pigments, 60(1), 1–7. doi:10.1016/S0143-72080143-7208(03)00111-6.

    Article  Google Scholar 

  • Zhang, Y., Geißen, S.-U., & Gal, C. (2008). Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151–1161. doi:10.1016/j.chemosphere.2008.07.086.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of Lithuania under the grant “Synergetic effects in DBD plasma technology for removal of organic compounds from wastewater” (Sinergoplas), project no. MIP-024/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Jankunaite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jankunaite, D., Tichonovas, M., Buivydiene, D. et al. Removal of Diclofenac, Ketoprofen, and Carbamazepine from Simulated Drinking Water by Advanced Oxidation in a Model Reactor. Water Air Soil Pollut 228, 353 (2017). https://doi.org/10.1007/s11270-017-3517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3517-z

Keywords

Navigation