Skip to main content

Advertisement

Log in

Clay-to-Carbon Ratio Controls the Effect of Herbicide Application on Soil Bacterial Richness and Diversity in a Loamy Field

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil texture and soil organic carbon (OC) influence the bacterial microenvironment and also control herbicide sorption. A field-scale exploratory study was conducted to investigate the potential interaction between soil texture parameters, herbicides, and soil bacterial richness and diversity. Glyphosate and bentazon were used to evaluate the herbicidal effect on bacterial community under different conditions created by clay and OC gradients in a loamy field. Metabarcoding by high-throughput sequencing of bacterial rDNA was used to estimate bacterial richness and diversity using OTUs, abundance-based coverage (ACE), Shannon diversity index, and phylogenetic diversity. In general, bacterial richness and diversity increased after bentazon application and decreased after glyphosate application. There was no significant effect for field locations with Dexter n (the ratio between clay and OC) values below 4.04 (the median of the values in the field study). The correlation coefficient (r) between bacterial richness and clay decreased after bentazon application, but increased after glyphosate application. Correlations between Dexter n and bacterial indices followed the same pattern, decreasing after bentazon application and increasing after glyphosate application. This indicated that the specific chemical nature of individual herbicides affected bacterial communities. This study reinforced the importance of including soil physical and chemical characteristics to explain the influence of pesticides on the variation in soil bacterial communities in agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allegrini, M., Zabaloy, M. C., & Gomez, E. D. (2015). Ecotoxicological assessment of soil microbial community tolerance to glyphosate. Science of the Total Environment, 533, 60–68.

    Article  CAS  Google Scholar 

  • Allievi, L., Gigliotti, C., Salardi, C., Valsecchi, G., Brusa, T., & Ferrari, A. (1996). Influence of the herbicide bentazon on soil microbial community. Microbiological Research, 151, 105–111.

    Article  CAS  Google Scholar 

  • Bach, E. M., Baer, S. G., Meyer, C. K., & Six, J. (2010). Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biology and Biochemistry, 42, 2182–2191.

    Article  CAS  Google Scholar 

  • Banks, M. L., Kennedy, A. C., Krerner, R. J., & Eivazi, F. (2014). Soil microbial community response to surfactants and herbicides in two soils. Applied Soil Ecology, 74, 12–20.

    Article  Google Scholar 

  • Borggaard, O. K., & Gimsing, A. L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science, 64, 441–456.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Bittinger, K., Bushman, F. D., Desantis, T. Z., Andersen, G. L., & Knight, R. (2010a). Pynast: a flexible tool for aligning sequences to a template alignment. Bioinformatics, 26, 266–267.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., Mcdonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Tumbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010b). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108, 4516–4522.

    Article  CAS  Google Scholar 

  • Chazdon, R.L., Colwell, R.K., Denslow, J.S., & Guariguata, M. R. D. O. E. A. E. B., University Of Connecticut, Storrs, Connecticut 06269 (USA) (1998). Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of Northeastern Costa Rica.

  • Constancias, F., Terrat, S., Saby, N. P. A., Horrigue, W., Villerd, J., Guillemin, J.-P., Biju-Duval, L., Nowak, V., Dequiedt, S., Ranjard, L., & Chemidlin Prévost-Bouré, N. (2015). Mapping and determinism of soil microbial community distribution across an agricultural landscape. MicrobiologyOpen, 4, 505–517.

    Article  Google Scholar 

  • Cycoń, M., Markowicz, A., & Piotrowska-Seget, Z. (2013a). Structural and functional diversity of bacterial community in soil treated with the herbicide napropamide estimated by the DGGE, CLPP and r/K-strategy approaches. Applied Soil Ecology, 72, 242–250.

    Article  Google Scholar 

  • Cycoń, M., Piotrowska-Seget, Z., & Kozdrój, J. (2010). Linuron effects on microbiological characteristics of sandy soils as determined in a pot study. Annals of Microbiology, 60, 439–449.

    Article  Google Scholar 

  • Cycoń, M., Wójcik, M., Borymski, S., & Piotrowska-Seget, Z. (2013b). Short-term effects of the herbicide napropamide on the activity and structure of the soil microbial community assessed by the multi-approach analysis. Applied Soil Ecology, 66, 8–18.

    Article  Google Scholar 

  • De Jonge, H., De Jonge, L. W., & Jacobsen, O. H. (2000). [C-14] glyphosate transport in undisturbed topsoil columns. Pest Management Science, 56, 909–915.

    Article  Google Scholar 

  • De Jonge, L. W., Moldrup, P., & Schjonning, P. (2009). Soil infrastructure, interfaces & translocation processes in inner space (“Soil-it-is”): towards a road map for the constraints and crossroads of soil architecture and biophysical processes. Hydrology and Earth System Sciences, 13, 1485–1502.

    Article  Google Scholar 

  • Dequiedt, S., Saby, N. P. A., Lelievre, M., Jolivet, C., Thioulouse, J., Toutain, B., Arrouays, D., Bispo, A., Lemanceau, P., & Ranjard, L. (2011). Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Global Ecology and Biogeography, 20, 641–652.

    Article  Google Scholar 

  • Desantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069–5072.

    Article  CAS  Google Scholar 

  • Dexter, A. R., Richard, G., Arrouays, D., Czyz, E. A., Jolivet, C., & Duval, O. (2008). Complexed organic matter controls soil physical properties. Geoderma, 144, 620–627.

    Article  CAS  Google Scholar 

  • Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Management Science, 64, 319–325.

  • Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10.

    Article  Google Scholar 

  • Gaston, L. A., Locke, M. A., Wagner, S. C., Zablotowicz, R. M., & Reddy, K. N. (1996). Sorption of bentazon and degradation products in two Mississippi soils. Weed Science, 44, 678–682.

    CAS  Google Scholar 

  • Gee, G.W., & Or, D. (2002). Particle-size analysis. In J. H. Dane & G.C. Topp (Eds.), Methods of soil analysis. Part 4. SSSA Book Series No. 5 (pp. 255–293). Madison, WI: SSSA.

  • Ghafoor, A., Jarvis, N. J., & Stenstrom, J. (2013). Modelling pesticide sorption in the surface and subsurface soils of an agricultural catchment. Pest Management Science, 69, 919–929.

    Article  CAS  Google Scholar 

  • Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G.A.C., & Baird, D.J. (2011). Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE, 6.

  • Hu, H. W., Zhang, L. M., Yuan, C. L., & He, J. Z. (2013). Contrasting euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns. Soil Biology and Biochemistry, 64, 18–27.

    Article  CAS  Google Scholar 

  • Huber, R., & Otto, S. (1994). Environmental behavior of bentazon herbicide. Reviews of Environmental Contamination and Toxicology, 137, 111–134.

    CAS  Google Scholar 

  • Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methe, B., Desantis, T. Z., Petrosino, J. F., Knight, R., Birren, B. W., & Consortium, H. M. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21, 494–504.

    Article  CAS  Google Scholar 

  • Jacobsen, C. S., & Hjelmsø, M. H. (2014). Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology, 27, 15–20.

    Article  CAS  Google Scholar 

  • Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58, 523–546.

    Article  Google Scholar 

  • Keller, T., & Dexter, A. R. (2012). Plastic limits of agricultural soils as functions of soil texture and organic matter content. Soil Research, 50, 7–17.

    Article  Google Scholar 

  • Lancaster, S. H., Hollister, E. B., Senseman, S. A., & Gentry, T. J. (2010). Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science, 66, 59–64.

    Article  CAS  Google Scholar 

  • Lane, M., Lorenz, N., Saxena, J., Ramsier, C., & Dick, R. P. (2012). The effect of glyphosate on soil microbial activity, microbial community structure, and soil potassium. Pedobiologia, 55, 335–342.

    Article  CAS  Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111–5120.

  • Lindhardt, B., Abildtrup, C., Vosgerau, H., Olsen, P., Torp, S., Iversen, B.V., Jørgensen, J.O., Plauborg, F., Rasmussen, P., & Gravesen, P. (2001). The Danish pesticide leaching assessment programme: site characterization and monitoring design. Copenhagen, Denmark: Geological Survey of Denmark and Greenland.

  • Lo, C. C. (2010). Effect of pesticides on soil microbial community. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 45, 348–359.

    Article  CAS  Google Scholar 

  • Lupwayi, N. Z., Harker, K. N., Clayton, G. W., Turkington, T. K., Rice, W. A., & O’Donovan, J. T. (2004). Soil microbial biomass and diversity after herbicide application. Canadian Journal of Plant Science, 84, 677–685.

    Article  CAS  Google Scholar 

  • Maclean, D., Jones, J. D. G., & Studholme, D. J. (2009). Application of ‘next-generation’ sequencing technologies to microbial genetics. Nature Reviews Microbiology, 7, 287–296.

    Google Scholar 

  • Mahia, J., Gonzalez-Prieto, S. J., Martin, A., Baath, E., & Diaz-Ravina, M. (2011). Biochemical properties and microbial community structure of five different soils after atrazine addition. Biology and Fertility of Soils, 47, 577–589.

    Article  CAS  Google Scholar 

  • Marsh, J. A. P., Wingfield, G. I., Da Vies, H. A., & Grossbard, E. (1978). Simultaneous assessment of various responses of the soil microflora to bentazone. Weed Research, 18, 293–300.

    Article  CAS  Google Scholar 

  • Naveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., Ferré, T. P. A., & De Jonge, L. W. (2016). Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103, 44–55.

    Article  Google Scholar 

  • Poly, F., Ranjard, L., Nazaret, S., Gourbière, F., & Monrozier, L. J. (2001). Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Applied and Environmental Microbiology, 67, 2255–2262.

    Article  CAS  Google Scholar 

  • Price, M.N., Dehal, P.S., & Arkin, A.P. (2010). Fasttree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE, 5.

  • Quince, C., Lanzen, A., Davenport, R.J., & Turnbaugh, P.J. (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics, 12.

  • Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Gourbiere, F., Thioulouse, J., & Nazaret, S. (2000). Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA). Microbial Ecology, 39, 263–272.

    CAS  Google Scholar 

  • Ranjard, L., & Richaume, A. (2001). Quantitative and qualitative microscale distribution of bacteria in soil. Research in Microbiology, 152, 707–716.

    Article  CAS  Google Scholar 

  • Ratcliff, A. W., Busse, M. D., & Shestak, C. J. (2006). Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Applied Soil Ecology, 34, 114–124.

    Article  Google Scholar 

  • Schjonning, P., De Jonge, L.W., Munkholm, L.J., Moldrup, P., Christensen, B.T., & Olesen, J.E. (2012). Clay dispersibility and soil friability-testing the soil clay-to-carbon saturation concept. Vadose Zone Journal, 11.

  • Seghers, D., Verthé, K., Reheul, D., Bulcke, R., Siciliano, S. D., Verstraete, W., & Top, E. M. (2003). Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil. FEMS Microbiology Ecology, 46, 139–146.

    Article  CAS  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  Google Scholar 

  • Sihtmäe, M., Blinova, I., Künnis-Beres, K., Kanarbik, L., Heinlaan, M., & Kahru, A. (2013). Ecotoxicological effects of different glyphosate formulations. Applied Soil Ecology, 72, 215–224.

    Article  Google Scholar 

  • Soares, A., Paradelo, M., Moldrup, P., Delerue-Matos, C., & De Jonge, L. (2015). Predictivity strength of the spatial variability of phenanthrene sorption across two sandy loam fields. Water, Air, & Soil Pollution, 226, 1–13.

    Article  CAS  Google Scholar 

  • Soares, A.A., Moldrup, P., Minh, L.N., Vendelboe, A.L., Schjonning, P., & De Jonge, L.W. (2013). Sorption of phenanthrene on agricultural soils. Water Air, and Soil Pollution, 224.

  • Thorstensen, C. W., Lode, O., Eklo, O. M., & Christiansen, A. (2001). Sorption of bentazone, dichlorprop, MCPA, and propiconazole in reference soils from Norway. Journal of Environmental Quality, 30, 2046–2052.

    Article  CAS  Google Scholar 

  • Vinther, F. P., Eiland, F., Lind, A. M., & Elsgaard, L. (1999). Microbial biomass and numbers of denitrifiers related to macropore channels in agricultural and forest soils. Soil Biology and Biochemistry, 31, 603–611.

    Article  CAS  Google Scholar 

  • Weiss, A., & Hays, C. J. (2005). Calculating daily mean air temperatures by different methods: implications from a non-linear algorithm. Agricultural and Forest Meteorology, 128, 57–65.

    Article  Google Scholar 

  • Zabaloy, M. C., Garland, J. L., & Gomez, M. A. (2008). An integrated approach, to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas Region, Argentina. Applied Soil Ecology, 40, 1–12.

    Article  Google Scholar 

Download references

Acknowledgments

The technical assistance of Stig T. Rasmussen, Bodil B. Christensen, Jørgen M. Nielsen, Michael Koppelgaard and Janne H. Hansen are gratefully acknowledged. The study was part of the Soil Infrastructure, Interfaces, and Translocation Processes in Inner Space (Soil-it-is) project, which is funded by the Danish Research Council for Technology and Production Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Paradelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herath, H.M.L.I., Moldrup, P., de Jonge, L.W. et al. Clay-to-Carbon Ratio Controls the Effect of Herbicide Application on Soil Bacterial Richness and Diversity in a Loamy Field. Water Air Soil Pollut 228, 3 (2017). https://doi.org/10.1007/s11270-016-3175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3175-6

Keywords

Navigation