Skip to main content

Advertisement

Log in

Simulation of the Contribution of Phosphorus-Containing Minerogenic Particles to Particulate Phosphorus Concentration in Cayuga Lake, New York

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Phosphorus (P) associated with minerogenic particles delivered from watersheds can interfere with the common use of total P (TP) concentration as a trophic state metric in lacustrine systems, particularly proximate to tributary entries, because of its limited bioavailability. The concentration of unavailable minerogenic particulate P (PPm/u), where it is noteworthy, should be subtracted from TP in considering primary production potential and trophic state levels. A first mass balance model for PPm/u is developed and tested here for Cayuga Lake, New York. This is supported by a rare combination of detailed information for minerogenic particle level dynamics for the tributaries and lake, the bioavailability of tributary particulate P (PP), and previously tested hydrothermal/transport and minerogenic particle concentration submodels. The central roles of major runoff events and localized tributary loading at one end of the lake in driving patterns of PPm/u in time and space are well simulated, including (1) the higher PPm/u concentrations in a shallow area (“shelf”) adjoining the inputs, relative to pelagic waters, following runoff events, and (2) the positive dependence of the shelf increases on the magnitude of the event. The PPm/u component of P was largely responsible for the higher summer average TP on the shelf vs. pelagic waters and the exceedance of a TP water quality limit on the shelf. The effective simulation of PPm/u allows an appropriate adjustment of TP values to avoid overrepresentation of potential primary production levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arhonditsis, G. B., & Brett, M. T. (2004). Evaluation of the current state of mechanistic aquatic biogeochemical modeling. Marine Ecology Progress Series, 271, 13–26.

    Article  Google Scholar 

  • Auer, M. T., Tomasoski, K. A., Babiera, M. J., Needham, M., Effler, S. W., Owens, E. M., & Hansen, J. M. (1998). Phosphorus bioavailability and P-cycling in Cannonsville Reservoir. Lake and Reservoir Management, 14(2–3), 278–289.

    Article  CAS  Google Scholar 

  • Auer, M. T., Lambert, R. S., Kuczynski, A., Matthews, D. A., Effler, S. W. & DePinto, J. V. (2016). Phosphorus bioavailability: methods, monitoring and lessons learned. Journal of Great Lakes Research, In review.

  • Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., & Stramski, D. (2003). Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography, 48, 843–859.

    Article  Google Scholar 

  • Baker, D. B., Confesor, R., Ewing, D. E., Johnson, L. T., Kramer, J. W., & Merryfield, B. J. (2014). Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability. Journal of Great Lakes Research, 40(3), 502–517.

    Article  CAS  Google Scholar 

  • Baldwin, B. S., Mayer, M. S., Dayton, J., Pau, N., Mendilla, J., Sullivan, M., Moore, A., Ma, A., & Mills, E. L. (2002). Comparative growth and feeding in zebra and quagga mussels (Dreissena polymorpha and Dreissena bugensis): implications for North American lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59(4), 680–694.

    Article  Google Scholar 

  • Behrenfeld, M. J., & Boss, E. (2006). Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass. Journal of Marine Research, 64, 431–451.

    Article  CAS  Google Scholar 

  • Bloesch, J. (1996). Towards a new generation of sediment traps and a better measurement/understanding of settling particulate flux in lakes and oceans: a hydrodynamic protocol. Aquatic Sciences, 58, 283–296.

    Article  Google Scholar 

  • Bloesch, J. (2003). Sedimentation and lake sediment formation. The Lakes Handbook, volume 1: Limnology and Limnetic Ecology (p. 229). Malden, MA: Blackwell Science.

  • Boegman, L., Loewen, M. R., Hamblin, P. F., & Culver, D. A. (2008). Vertical mixing and weak stratification over zebra mussel colonies in western Lake Erie. Limnology and Oceanography, 53(3), 1093.

    Article  Google Scholar 

  • Carlson, R. E. (1977). A trophic status index for lakes. Limnology and Oceanography, 22(2), 361–368.

    Article  CAS  Google Scholar 

  • Carlson, R. E., & Havens, K. E. (2005). Simple graphical methods for the interpretation of relationships between trophic state variables. Lake and Reservoir Management, 21(1), 107–118.

    Article  CAS  Google Scholar 

  • Chapra, S. C. (1997). Surface water-quality modeling (p. 844). New York: McGraw-Hill.

    Google Scholar 

  • Chapra, S. C. (2003). Engineering water quality models and TMDLs. Journal of Water Resources Planning and Management ASCE, 129(4), 247–256.

    Article  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Cole, T. M., & Wells, S. A. (2014). CE-QUAL-W2: a two-dimensional, laterally averaged, hydrodynamic and water quality model, version 3.71. Portland, Oregon: Department of Civil and Environmental Engineering, Portland State University.

    Google Scholar 

  • Cooke, G. D., Welch, E. B., Peterson, S. A., & Nichols, S. A. (2005). Restoration and management of lakes and reservoirs. Boca Raton, FL: Taylor and Francis, CRC Press.

    Google Scholar 

  • DePinto, J. V., Young, T. C., & Martin, S. C. (1981). Algal-available phosphorus in suspended sediments from lower Great Lakes tributaries. Journal of Great Lakes Research, 7(3), 311–325.

    Article  CAS  Google Scholar 

  • Dodds, W. K. (2003). Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. Journal of North American Benthological Society, 22(2), 171–181.

    Article  Google Scholar 

  • Dorich, R. A., Nelson, D. W., & Sommers, L. E. (1985). Estimating algal available phosphorus in suspended sediments by chemical extraction. Journal of Environmental Quality, 14(3), 400–404.

    Article  CAS  Google Scholar 

  • Effler, S. W., & Matthews, D. A. (2004). Sediment resuspension and drawdown in a water supply reservoir. Journal of the American Water Resources Association, 40(1), 251–264.

    Article  Google Scholar 

  • Effler, S. W., & Peng, F. (2014). Long-term study of minerogenic particle optics in Cayuga Lake, New York. Limnology and Oceanography, 59(2), 325–339.

    Article  CAS  Google Scholar 

  • Effler, S. W., Auer, M. T., & Johnson, N. A. (1989). Modeling Cl concentration in Cayuga Lake, USA. Water, Air, and Soil Pollution, 44, 347–362.

    Article  CAS  Google Scholar 

  • Effler, S. W., Matthews, D. A., Perkins, M. G., Johnson, D. L., Peng, F., Penn, M. R., & Auer, M. T. (2002). Patterns and impacts of inorganic tripton in Cayuga Lake. Hydrobiologia, 482, 137–150.

    Article  Google Scholar 

  • Effler, S. W., Prestigiacomo, A. R., Matthews, D. A., Gelda, R. K., Peng, F., Cowen, E. A., & Schweitzer, S. A. (2010). Tripton, trophic state metrics, and near-shore versus pelagic zone responses to external loads in Cayuga Lake, New York. Fundamental and Applied Limnology, 178(1), 1–15.

    Article  CAS  Google Scholar 

  • Effler, S. W., Prestigiacomo, A. R., Peng, F., Gelda, R., & Matthews, D. A. (2014). Partitioning the contributions of minerogenic particles and bioseston to particulate phosphorus and turbidity. Inland Waters, 4, 179–192.

  • Ekholm, P., & Krogerus, K. (2003). Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. Hydrobiologia, 492(1–3), 29–42.

    Article  CAS  Google Scholar 

  • Ellison, M. E., & Brett, M. T. (2006). Particulate phosphorus bioavailability as a function of stream flow and land cover. Water Research, 40(6), 1258–1268.

    Article  CAS  Google Scholar 

  • FLUX32 (2013). Load Estimation Software (version 3.31) [software]. US Army Corp. of Engineers. Retrieved from http://el.erdc.usace.army.mil.

  • Froelich, P. N. (1988). Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnology and Oceanography, 33(4), 649–668.

    CAS  Google Scholar 

  • Gelda, R. K., Effler, S. W., Peng, F., Owens, E. M., & Pierson, D. C. (2009). Turbidity model for Ashokan Reservoir, New York: case study. Journal of Environmental Engineering, 135(9), 885–895.

    Article  CAS  Google Scholar 

  • Gelda, R. K., Effler, S. W., & Peng, F. (2012). Modeling turbidity and the effects of alum application for a water supply reservoir. Journal of Environmental Engineering, 138(1), 38–47.

    Article  CAS  Google Scholar 

  • Gelda, R. K., Effler, S. W., Prestigiacomo, A. R., Peng, F., Effler, A. J. P., Wagner, B. A., Perkins, M. G., O’Donnell, D. M., O’Donnell, S. M., & Pierson, D. C. (2013). Characterizations and modeling of turbidity in a water supply reservoir following an extreme runoff event. Inland Waters, 3(3), 377–390.

    Article  Google Scholar 

  • Gelda, R. K., King, A. T., Effler, S. W., Schweitzer, S. A., & Cowen, E. A. (2015). Testing and application of a two-dimensional hydrothermal/transport model for a long, deep and narrow lake with moderate Rossby number. Inland Waters, 5(4), 387–402.

    Article  Google Scholar 

  • Gelda, R. K., Effler, S. W., Prestigiacomo, A. R., Peng, F. and Watkins, J. M.: 2016, Inland Waters (in review).

  • Haith, D. A., Hollingshead, N., Bell, M. L., Kreszewski, S. W., & Morey, S. J. (2012). Nutrient loads to Cayuga Lake, New York: watershed modeling on a budget. Journal of Water Resources Planning and Management, 138(5), 571–580.

    Article  Google Scholar 

  • Hecky, R. E., Campbell, P., & Hendzel, L. L. (1993). The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnology and Oceanography, 38, 709–724.

    Article  CAS  Google Scholar 

  • James, W. F., & Barko, J. W. (1993). Sediment resuspension, redeposition, and focusing in a small dimictic reservoir. Canadian Journal of Fisheries and Aquatic Sciences, 50, 1023–1028.

    Article  Google Scholar 

  • Larson, S. (2011). Phosphorus bioavailability in tributary and point source discharges. 0–96. Department of Civil and Environmental Engineering, Michigan Technological University. (GENERIC) Ref Type: Thesis/Dissertation

  • Nagle, G. N., Fahey, T. J., Ritchie, J. C., & Woodbury, P. B. (2007). Variations in sediment sources and yields in the Finger Lakes and Catskills regions of New York. Hydrological Processes, 21(6), 828–838.

    Article  CAS  Google Scholar 

  • NOAA (National Oceanic and Atmospheric Administration) (2013). Regional climate trends and scenarios for the U.S. national climate assessment. Part 1. Climate of the Northeast U.S. NOAA Technical Report NESDIS 141–1, U.S. Department of Commerce, Washington, DC.

  • Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis. New York, NY: Pergamon Press.

    Google Scholar 

  • Peng, F., & Effler, S. W. (2005). Inorganic tripton in the Finger Lakes of New York: importance to optical characteristics. Hydrobiologia, 543(1), 259–277.

    Article  CAS  Google Scholar 

  • Peng, F., & Effler, S. W. (2007). Suspended minerogenic particles in a reservoir: light scattering features from individual particle analysis. Limnology and Oceanography, 52(1), 204–216.

    Article  CAS  Google Scholar 

  • Peng, F., & Effler, S. W. (2010). Characterizations of individual suspended mineral particles in western Lake Erie: implications for light scattering and water clarity. Journal of Great Lakes Research, 36(4), 686–698.

    Article  CAS  Google Scholar 

  • Peng, F., & Effler, S. W. (2012). Mass-specific scattering coefficient for natural minerogenic particle populations: particle size distribution effect and closure analyses. Applied Optics, 51(13), 2236–2249.

    Article  Google Scholar 

  • Peng, F., & Effler, S. W. (2015). Quantifications and water quality implications of minerogenic particles in Cayuga Lake and its tributaries. Inland Waters, 5(4), 403–420.

    Article  Google Scholar 

  • Peng, F., & Effler, S. W. (2016). Advancing two-component partitioning of light scattering in Cayuga Lake, New York. Limnology and Oceanography, 61, 298–315.

    Article  CAS  Google Scholar 

  • Peng, F., Effler, S. W., O’Donnell, D. M., Weidemann, A. D., & Auer, M. T. (2009). Characterization of minerogenic particles in support of modeling light scattering in Lake Superior through a two-component approach. Limnology and Oceanography, 54(4), 1369–1381.

    Article  Google Scholar 

  • Penn, M. R., & Auer, M. T. (1997). The seasonal variability in phosphorus speciation and deposition in a calcareous eutrophic lake. Journal of Marine Geology, 139, 47–59.

    Article  CAS  Google Scholar 

  • Penn, M. R., Auer, M. T., Van Orman, E. L., & Korienek, J. J. (1995). Phosphorus diagenesis in lake sediments: investigations using fractionation techniques. Marine and Freshwater Research, 46(1), 89–99.

    CAS  Google Scholar 

  • Prestigiacomo, A. R., Effler, S. W., O’Donnell, D. M., Hassett, J. M., Michelanko, E. M., Lee, Z., & Weidemann, A. D. (2007). Turbidity and suspended solids levels and loads in a sediment enriched stream: implications for impacted lotic and lentic ecosystems. Lake and Reservoir Management, 23, 231–244.

    Article  Google Scholar 

  • Prestigiacomo, A. R., Effler, S. W., Matthews, D. A., Auer, M. T., Downer, B. E., Kuczynski, A., & Walter, M. T. (2016). Apportionment of bioavailable phosphorus loads entering Cayuga Lake, New York. Journal of the American Water Resources Association, 52(1), 31–47.

    Article  CAS  Google Scholar 

  • Psenner, R., & Puckson, R. (1988). Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Archiv fur Hydrobiologie Beiheft Ergebnisse der Limnologie, 30, 43–59.

    CAS  Google Scholar 

  • Reddy, K. R., Kadlec, R. H., Flaig, E., & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology, 29(1), 83–146.

    Article  CAS  Google Scholar 

  • Reeders, H. H., & bij de Vaate, A. (1992). Bioprocessing of polluted suspended matter from the water column by zebra mussel (Dreissena polymorpha Pallas). Hydrobiologia, 239, 53–63.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Reynolds, C. S., & Davies, P. S. (2001). Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biological Reviews of the Cambridge Philosophical Society, 76(1), 27–64.

    Article  CAS  Google Scholar 

  • Robson, B. J. (2014). State of the art in modelling of phosphorus in aquatic systems: review, criticisms and commentary. Environmental Modelling & Software, 61, 287–296.

    Article  Google Scholar 

  • Rosa, F., Bloesch, J. & Rathke, D. E. (1991). Sampling the settling and suspended particulate matter (SPM)Handbook of techniques of aquatic sediment sampling (p. 130). Ann Arbor, MI: CRC Press.

  • Vanderploeg, H. A., Liebig, J. R., Nalepa, T. F., Fahnenstiel, G. L., & Pothoven, S. A. (2010). Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research, 36, 50–59.

    Article  Google Scholar 

  • Vogel, R. M., Stedinger, J. R., & Hooper, R. P. (2003). Discharge indices for water quality loads. Water Resources Research, 39(10), 1273.

    Google Scholar 

  • Watkins, J. M., Rudstam, L. G., Mills, E. L., & Teece, M. A. (2012). Coexistence of the native benthic amphipod Diporeia spp. and exotic dreissenid mussels in the New York Finger Lakes. Journal of Great Lakes Research, 38(2), 226–235.

    Article  Google Scholar 

  • Weilenmann, U., O’Melia, C. R., & Stumm, W. (1989). Particle transport in lakes: models and measurements. Limnology and Oceanography, 34, 1–18.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (2001). Limnology: lake and reservoir ecosystems. New York: Academic Press.

    Google Scholar 

  • Weyhenmeyer, G. A., Meili, M., & Pierson, D. C. (1995). A simple method to quantify sources of settling particles in lakes: resuspension versus new sedimentation of material from planktonic production. Marine and Freshwater Research, 46, 223–231.

    Google Scholar 

  • Young, T. C., DePinto, J. V., Flint, S. E., Switzenbaum, S. M., & Edzwald, J. K. (1982). Algal availability of phosphorus in municipal wastewater. Journal of Water Pollution Control Federation, 54(11), 1505–1516.

    CAS  Google Scholar 

  • Young, T. C., DePinto, J. V., Martin, S. C., & Bonner, J. S. (1985). Algal-available particulate phosphorus in the Great Lake basin. Journal of Great Lakes Research, 11(4), 434–446.

    Article  CAS  Google Scholar 

  • Young, T. C., DePinto, J. V., & Heidtke, T. M. (1988). Factors affecting the efficiency of some estimators of fluvial total phosphorus loads. Water Resources Research, 24(9), 1535–1540.

    Article  CAS  Google Scholar 

  • Zhang, H., Culver, D. A., & Boegman, L. (2008). A two-dimensional ecological model of Lake Erie: application to estimate dreissenid impacts on large lake plankton populations. Ecological Modelling, 214(2–4), 219–241.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for portions of this study was provided by Cornell University. Staff of the Upstate Freshwater Institute provided critical support through sampling and laboratory analyses. This is contribution number 333 of the Upstate Freshwater Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Effler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelda, R.K., Effler, S.W., Prestigiacomo, A.R. et al. Simulation of the Contribution of Phosphorus-Containing Minerogenic Particles to Particulate Phosphorus Concentration in Cayuga Lake, New York. Water Air Soil Pollut 227, 421 (2016). https://doi.org/10.1007/s11270-016-3116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3116-4

Keywords

Navigation