Skip to main content
Log in

Transport of CMC-Stabilized nZVI in Saturated Sand Column: the Effect of Particle Concentration and Soil Grain Size

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A considerable number of studies have been conducted to investigate the effect of physical and chemical variables on the transport of nanoscale zerovalent iron (nZVI) in granular media. However, the role of soil grain size as a crucial factor in nanoparticle mobility is less understood. The present research work sought to examine the simultaneous effects of soil grain size and particle concentration on the transport of nZVI coated with carboxymethyl cellulose (CMC-nZVI), using saturated sand packed column experiments. To this end, a total of 12 tests were conducted by combining four different particle concentrations (C = 10, 200, 3000, 10,000 mg/l) and three grain sizes (dc = 0.297–0.5 mm, 0.5–1 mm, 1–2 mm). The effluent nZVI concentration and water pressure drop along the column were measured. The results showed that during the injection time, decreasing the grain size and increasing the particle concentration reduces the mobility of CMC-nZVI due to ripening phenomena, while during the flushing time (introducing deionized water), such changes in grain size and particle concentration increase the mobility of CMC-nZVI due to a release from the secondary energy minimum well (in the DLVO theory).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barany, S. (2003). Role of interfaces in environmental protection. Dordrecht: Kluwer Academic Publishers.

  • Basnet, M., Ghoshal, S., & Nathalie, T. (2013). Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Environ. Sci. Technol., 47, 13355–13364.

    Article  CAS  Google Scholar 

  • Busch, J., Meißner, T., Potthoff, A., & Oswald, S. E. (2014). Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system. Environ. Sci. Pollut. Res., 21(18), 10908–10916.

    Article  CAS  Google Scholar 

  • Caldelas, F.M. (2010). Experimental parameters analysis of nanoparticle retention in porous media. Thesis of Master of Science in Engineering, Faculty of Graduate School of University of Texas of Austin.

  • Cirtiu, C. M., Raychoudhury, T., Ghoshal, S., & Moores, A. (2011). Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers. Colloids Surf. A Physicochem. Eng. Asp., 390, 95–104.

    Article  CAS  Google Scholar 

  • Comba, S., Molfetta, A. D., & Sethi, R. (2011). A Comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut., 215, 595–607.

    Article  CAS  Google Scholar 

  • Dong, H., & Lo, I. M. C. (2013). Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Res., 47(1), 2489–2496.

    Article  CAS  Google Scholar 

  • Dong, H., & Lo, I. M. C. (2014). Transport of surface-modified nano zero-valent iron (SM-NZVI) in saturated porous media: effects of surface stabilizer type, subsurface geochemistry, and contaminant loading. Water Air Soil Pollut., 225, 2107.

    Article  Google Scholar 

  • Elimelech, M., Gregory, J., Jia, X., & Williams, R. (1995). Particle deposition and aggregation: measurement, modeling, and simulation. Boston: Butterworth-Heinemann.

    Google Scholar 

  • Elliott, D. W., & Zhang, W.-x. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol., 35, 4922–4926.

    Article  CAS  Google Scholar 

  • Ersenkal, D. A., Ziylan, A., Ince, N. H., Acar, H. Y., Demirer, M., & Copty, N. K. (2011). Impact of dilution on the transport of poly(acrylic acid) supported magnetite nanoparticles in porous media. J. Contam. Hydrol., 126, 248–257.

    Article  CAS  Google Scholar 

  • Franchi, A., & O’Melia, C. R. (2003). Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environ. Sci. Technol., 37(6), 1122–1129.

    Article  CAS  Google Scholar 

  • Gheju, M. (2011). Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut., 222, 103–148.

    Article  CAS  Google Scholar 

  • Godinez, I. G., & Darnault, C. J. G. (2011). Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res., 45, 839–851.

    Article  CAS  Google Scholar 

  • Godinez, I. G., Darnault, C. J. G., Khodadoust, A. P., & Bogdan, D. (2013). Deposition and release kinetics of nano-TiO2 in saturated porous media: effects of solution ionic strength and surfactants. Environ. Pollut., 174, 106–113.

    Article  CAS  Google Scholar 

  • Gomes, H. I., Ferreira, C. D., Ribeiro, A. B., & Pamukcu, S. (2013). Enhanced transport and transformation of zerovalent nanoiron in clay using direct electric current. Water Air Soil Pollut., 224, 1710.

    Article  Google Scholar 

  • Grieger, K. D., Fjordbøge, A., Hartmann, N. B., Eriksson, E., Bjerg, P. L., & Baun, A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J. Contam. Hydrol., 118, 165–183.

    Article  CAS  Google Scholar 

  • Hahn, M. W., & O’Melia, C. R. (2004). Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environ. Sci. Technol., 38(1), 210–220.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind. Eng. Chem. Res., 46, 29–34.

    Article  CAS  Google Scholar 

  • He, F., Zhang, M., Qian, T., & Zhao, D. (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. J. Colloid Interface Sci., 334, 96–102.

    Article  CAS  Google Scholar 

  • He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Tech., 39, 3314–3320.

    Article  CAS  Google Scholar 

  • Hosseini, S. M., & Tosco, T. (2013). Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column. Water Res., 47, 326–338.

    Article  CAS  Google Scholar 

  • Jiemvarangkul, P., Zhang, W. X., & Lien, H. L. (2011). Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem. Eng. J., 170, 482–491.

    Article  CAS  Google Scholar 

  • Johnson, R. L., Johnson, G. O., Nurmi, J. T., & Tratnyek, P. G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environ. Sci. Tech., 43, 5455–5460.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Nepal, D., Manning, B., & Choi, H. (2007). Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J. Nanopart. Res., 9, 725–735.

    Article  CAS  Google Scholar 

  • Kim, H. J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2012). Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J. Colloid Interface Sci., 370, 1–10.

    Article  CAS  Google Scholar 

  • Kirwan, L. J., Fawell, P. D., & vanBronswijk, W. (2004). An in situ FTIR-ATR study of polyacrylate adsorbed onto hematite at high pH and high ionic strength. Langmuir, 20, 4093–4100.

    Article  CAS  Google Scholar 

  • Kocur, C. M., O’Carroll, D. M., & Sleep, B. E. (2013). Impact of nZVI stability on mobility in porous media. J. Contam. Hydrol., 145, 17–25.

    Article  CAS  Google Scholar 

  • Laumann, S., Micic, V., & Hofmann, T. (2014). Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through coinjection of polyelectrolytes. Water Res., 50, 70–79.

    Article  CAS  Google Scholar 

  • Laumann, S., Micic, V., Lowry, G. V., & Hofmann, T. (2013). Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ. Pollut., 179, 53–60.

    Article  CAS  Google Scholar 

  • Lerner, R. N., Lu, Q., Zeng, H., & Liu, Y. (2012). The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media. Water Res., 46, 975–985.

    Article  CAS  Google Scholar 

  • Li, Z., Sahle-Demessie, E., Hassan, A. A., & Sorial, G. A. (2011). Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res., 45, 4409–4418.

    Article  CAS  Google Scholar 

  • Lin, D., Tian, X., Wu, F., & Xing, B. (2010a). Fate and transport of engineered nanomaterials in the environment. J. Environ. Qual., 39, 1896–1908.

    Article  Google Scholar 

  • Lin, Y. H., Tseng, H. H., Wey, M. Y., & Lin, M. D. (2010b). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci. Total Environ., 408, 2260–2267.

    Article  CAS  Google Scholar 

  • Litton, G. M., & Olson, T. M. (1996). Particle size effects on colloid deposition kinetics: evidence of secondary minimum deposition. Colloids Surf. A Physicochem. Eng. Asp., 107, 273–283.

    Article  CAS  Google Scholar 

  • Mueller, N. C., Braun, J., Bruns, J., Cernı’k, M., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (nZVI) for groundwater remediation in Europe. Environ. Sci. Pollut. Res., 19, 550–558.

    Article  CAS  Google Scholar 

  • NanoIron—Nanofer STAR. Retrieved (2013), from http://www.nanoiron.cz/en/nanofer-star.

  • O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour., 51, 104–122.

    Article  Google Scholar 

  • Pamukcu, S., Hannum, L., & Wittle, J. K. (2008). Delivery and activation of nano-iron by DC electric field. J. Environ. Sci. Health A, 43(8), 934–944.

    Article  CAS  Google Scholar 

  • Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M., & Tufenkji, N. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol., 44(17), 6532–6549.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol., 41, 284–290.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ. Sci. Technol., 43(13), 5079–5085.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. J. Contam. Hydrol., 118, 152–164.

    Article  CAS  Google Scholar 

  • Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W. S., Gavaskar, A., & Holdsworth, T. (2005). Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Tech., 39(5), 1309–1318.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2012). Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res., 46, 1735–1744.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2014). Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Res., 50, 80–89.

    Article  CAS  Google Scholar 

  • Sakulchaicharoen, N., O’Carroll, D. M., & Herrera, J. E. (2010). Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J. Contam. Hydrol., 118, 117–127.

    Article  CAS  Google Scholar 

  • Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol., 42, 3349–3355.

    Article  CAS  Google Scholar 

  • Singh, V.P. (2002). Kinematic wave solutions for pollutant transport over an infiltrating plane with finite-period mixing and mixing zone. Hydrological Processes, 1612, 2441–2477.

  • Street, A., Sustich, R., Duncan, J., Savage, N., (Eds) (2014). Nanotechnology applications for clean water: Solutions for improving water quality (Micro and Nano Technologies). Burlington: William Andrew (Elsevier Science).

  • Suresh, C., Biju, V., Mukundan, P., & Warrier, K. G. K. (1998). Anatase to rutile transformation in sol-gel titania by modification of precursor. Polyhedron, 17(18), 3131–3135.

    Article  CAS  Google Scholar 

  • Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J. Nanopart. Res., 11(3), 635–645.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Bradford, S. A., Wan, J., Tokunaga, T., & Masoudih, A. (2013). Release of quantum dot nanoparticles in porous media: role of cation exchange and aging time. Environ. Sci. Technol., 47, 11528–11536.

    Article  CAS  Google Scholar 

  • Tosco, T., Bosch, J., Meckenstock, R., & Sethi, R. (2012). Transport of ferrihydrite nanoparticles in saturated porous media, role of ionic strength and flow rate. Environ. Sci. Technol., 46, 4008–4015.

    Article  CAS  Google Scholar 

  • Tosco, T., Papini, M. P., Viggi, C. C., & Sethi, R. (2014). Nanoscale zerovalent iron particles for groundwater remediation: a review. Journal of Cleaner Production, 77, 10–21.

    Article  CAS  Google Scholar 

  • Tufenkji, N., & Elimelech, M. (2004). Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir, 20(25), 10818–10828.

    Article  CAS  Google Scholar 

  • Tufenkji, N., Miller, G. F., Ryan, J. N., Harvey, R. W., & Elimelech, M. (2004). Transport of cryptosporidium oocysts in porous media: role of straining and physicochemical filtration. Environ. Sci. Technol., 38, 5932–5938.

    Article  CAS  Google Scholar 

  • Yang, J., & Sun, H. (2015). Degradation of γ-hexachlorocyclohexane using carboxymethylcellulose-stabilized fe/ni nanoparticles. Water, Air & Soil Pollution, 226, 280.

    Article  Google Scholar 

  • Wang, Y., Dave, R. N., & Pfeffer, R. (2004). Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. The Journal of Supercritical Fluids, 28, 85–99.

    Article  CAS  Google Scholar 

  • Wu, N., Fu, L., Su, M., Aslam, M., Wong, K. C., & Dravid, V. P. (2004). Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett., 4, 383–386.

    Article  CAS  Google Scholar 

  • Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res., 5, 323–333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Saberinasr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberinasr, A., Rezaei, M., Nakhaei, M. et al. Transport of CMC-Stabilized nZVI in Saturated Sand Column: the Effect of Particle Concentration and Soil Grain Size. Water Air Soil Pollut 227, 394 (2016). https://doi.org/10.1007/s11270-016-3097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3097-3

Keywords

Navigation