Skip to main content
Log in

Investigation of Methylene Blue Biosorption and Biodegradation by Bacillus thuringiensis 016

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, the removal of methylene blue by Bacillus thuringiensis (Bt) 016 was investigated through batch experiments and microscopic investigations. It was found that methylene blue could not affect the growth of B. thuringiensis 016 at the concentration ranging from 5 to 25 mg/L, and be removed with the increase of biomass. Further studies indicated that Bt 016 biomass possessed strong ability of methylene blue biosorption with a quick process. Twenty-five milligrams of methylene blue per liter could be completely biosorbed within 2 h. The pH value could affect the removal of methylene blue in a large extent. UV–visible, Fourier transform infrared (FT-IR) spectroscopy analyses, and microscopic investigations suggested that the removal of methylene blue could be divided into two steps as follows: (1) rapid biosorption of methylene blue on Bt 016 biomass through electrostatic attraction or chelating activity of functional groups; (2) methylene blue was further degraded by Bt 016 through enzyme-mediated or couple with the metabolism process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldev, E., MubarakAli, D., Ilavarasi, A., Pandiaraj, D., Ishack, K., & Thajuddin, N. (2013). Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids and Surfaces B-Biointerfaces, 105, 207–214.

    Article  CAS  Google Scholar 

  • Brar, S. K., Verma, M., Tyagi, R. D., Valero, J. R., & Surampalli, R. Y. (2009). Concurrent degradation of dimethyl phthalate (DMP) during production of Bacillus thuringiensis based biopesticides. Journal of Hazardous Materials, 171, 1016–1023.

    Article  CAS  Google Scholar 

  • Bravo, A., Gill, S. S., & Soberon, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49, 423–435.

    Article  CAS  Google Scholar 

  • Chen, C. H., Chang, C. F., Ho, C. H., Tsai, T. L., & Liu, S. M. (2008). Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere, 72, 1712–1720.

    Article  CAS  Google Scholar 

  • Chen, Z., Huang, Z., Cheng, Y., Pan, D., Pan, X., Yu, M., Pan, Z., Lin, Z., Guan, X., & Wu, Z. (2012). Cr(VI) uptake mechanism of Bacillus cereus. Chemosphere, 87, 211–216.

    Article  CAS  Google Scholar 

  • Cheng, Y., Lin, H. Y., Chen, Z. L., Megharaj, M., & Naidu, R. (2012). Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA-sodium alginate-kaolin gel beads. Ecotoxicology and Environmental Safety, 83, 108–114.

    Article  CAS  Google Scholar 

  • Choudhary, S., & Sar, P. (2011). Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. Journal of Hazardous Materials, 186, 336–343.

    Article  CAS  Google Scholar 

  • Chung, Y. C., & Chen, C. Y. (2009). Degradation of azo dye reactive violet 5 by TiO2 photocatalysis. Earth and Environmental Science, 7, 347–352.

    CAS  Google Scholar 

  • Das, S. K., Bhowal, J., Das, A. R., & Guha, A. K. (2006). Adsorption behavior of rhodamine B on Rhizopus oryzae biomass. Langmuir, 22, 7265–7272.

    Article  CAS  Google Scholar 

  • Dave, S. R., & Dave, R. H. (2009). Isolation and characterization of Bacillus thuringiensis for Acid red 119 dye decolourisation. Bioresource Technology, 100, 249–253.

    Article  CAS  Google Scholar 

  • Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30, 953–971.

    Article  CAS  Google Scholar 

  • Gopinath, K. P., Murugesan, S., Abraham, J., & Muthukumar, K. (2009). Bacillus sp. Mutant for improved biodegradation of Congo red: random mutagenesis approach. Bioresource Technology, 100, 6295–6300.

    Article  CAS  Google Scholar 

  • Guler, U. A., & Sarioglu, M. (2014). Mono and binary component biosorption of Cu(II), Ni(II), and Methylene Blue onto raw and pretreated S. cerevisiae: equilibrium and kinetics. Desalination and Water Treatment, 52, 4871–4888.

    Article  CAS  Google Scholar 

  • Hu, T. L. (1996). Removal of reactive dyes from aqueous solution by different bacterial genera. Water Science and Technology, 34, 89–95.

    Article  CAS  Google Scholar 

  • Karn, S. K., Chakrabarty, S. K., & Reddy, M. S. (2010). Characterization of pentachlorophenol degrading Bacillus strains from secondary pulp-and-paper-industry sludge. International Biodeterioration & Biodegradation, 64, 609–613.

    Article  CAS  Google Scholar 

  • Kebria, D. Y., Khodadadi, A., Ganjidoust, H., Badkoubi, A., & Amoozegar, M. A. (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. International Journal of Environmental Science and Technology, 6, 435–442.

    Article  CAS  Google Scholar 

  • Lahkimi, A., Oturan, M. A., Oturan, N., & Chaouch, M. (2007). Removal of textile dyes from water by the electro-Fenton process. Environmental Chemistry Letters, 5, 35–39.

    Article  CAS  Google Scholar 

  • Liao, C. S., Hung, C. H., & Chao, S. L. (2013). Decolorization of azo dye reactive black B by Bacillus cereus strain HJ-1. Chemosphere, 90, 2109–2114.

    Article  CAS  Google Scholar 

  • Lim, C. L., Morad, N., Teng, T. T., & Norli, I. (2011). Chemical Oxygen Demand (COD) reduction of a reactive dye wastewater using H2O2/pyridine/Cu (II) system. Desalination, 278, 26–30.

    Article  CAS  Google Scholar 

  • Lim, C. K., Bay, H. H., Aris, A., Majid, Z. A., & Ibrahim, Z. (2013). Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach. Environmental Science and Pollution Research, 20, 5056–5066.

    Article  CAS  Google Scholar 

  • Lv, G. Y., Cheng, J. H., Chen, X. Y., Zhang, Z. F., & Fan, L. F. (2013). Biological decolorization of malachite green by Deinococcus radiodurans R1. Bioresource Technology, 144, 275–280.

    Article  CAS  Google Scholar 

  • Ma, L., & Zhang, W. X. (2008). Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron. Environmental Science & Technology, 42, 5384–5389.

    Article  CAS  Google Scholar 

  • Mohamed, Z. K., Ahmed, M. A., Fetyan, N. A., & Elnagdy, S. M. (2010). Isolation and molecular characterisation of malathion-degrading bacterial strains from waste water in Egypt. Journal of Advanced Research, 1(145–149), 2010.

    Google Scholar 

  • Ncibi, M. C., Mahjoub, B., & Seffen, M. (2007). Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres. Journal of Hazardous Materials, 139, 280–285.

    Article  CAS  Google Scholar 

  • Ncibi, M. C., Ben Hamissa, A. M., Fathallah, A., Kortas, M. H., Baklouti, T., Mahjoub, B., & Seffen, M. (2009). Biosorptive uptake of methylene blue using Mediterranean green alga Enteromorpha spp. Journal of Hazardous Materials, 170, 1050–1055.

    Article  CAS  Google Scholar 

  • Noraini, C. H. C., Morad, N., Norli, I., Teng, T. T., & Ogugbue, C. J. (2012). Methylene blue degradation by Sphingomonas paucimobilis under aerobic conditions. Water, Air, and Soil Pollution, 223, 5131–5142.

    Article  Google Scholar 

  • Ozturk, A., & Abdullah, M. I. (2006). Toxicological effect of indole and its azo dye derivatives on some microorganisms under aerobic conditions. Science of the Total Environment, 358, 137–142.

    Article  Google Scholar 

  • Pagga, U., & Taeger, K. (1994). Development of a method for adsorption of dyestuffs on activated sludge. Water Research, 28, 1051–1057.

    Article  CAS  Google Scholar 

  • Pan, T., Ren, S. Z., Xu, M. Y., Sun, G. P., & Guo, J. (2013). Extractive biodecolorization of triphenylmethane dyes in cloud point system by Aeromonas hydrophila DN322p. Applied Microbiology and Biotechnology, 97, 6051–6055.

    Article  CAS  Google Scholar 

  • Pearce, C. I., Lloyd, J. R., & Guthrie, J. T. (2003). The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 58, 179–196.

    Article  CAS  Google Scholar 

  • Poznyak, T., Colindres, P., & Chairez, I. (2007). Treatment of textile industrial dyes by simple ozonation with water recirculation. Journal of the Mexican Chemical Society, 51, 81–86.

    CAS  Google Scholar 

  • Prasad, A., & Rao, K. (2013). Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Applied Microbiology and Biotechnology, 97, 7469–7481.

    Article  CAS  Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177, 70–80.

    Article  CAS  Google Scholar 

  • Ravikumar, K., Deebika, B., & Balu, K. (2005). Decolourization of aqueous dye solutions by a novel adsorbent: application of statistical designs and surface plots for the optimization and regression analysis. Journal of Hazardous Materials, 122, 75–83.

    Article  CAS  Google Scholar 

  • Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: an impotent pathogen? Trends in Microbiology, 18, 189–194.

    Article  CAS  Google Scholar 

  • Sellami, S., Zghal, T., Cherif, M., Zalila-Kolsi, I., Jaoua, S., & Jamoussi, K. (2013). Screening and identification of a Bacillus thuringiensis strain S1/4 with large and efficient insecticidal activities. Journal of Basic Microbiology, 53, 539–548.

    Article  CAS  Google Scholar 

  • Soberon, M., Gill, S. S., & Bravo, A. (2009). Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences, 66, 1337–1349.

    Article  CAS  Google Scholar 

  • Tamboli, D. P., Kagalkar, A. N., Jadhav, M. U., Jadhav, J. P., & Govindwar, S. P. (2010). Production of polyhydroxyhexadecanoic acid by using waste biomass of Sphingobacterium sp. ATM generated after degradation of textile dye Direct red 5B. Bioresource Technology, 101, 2421–2427.

    Article  CAS  Google Scholar 

  • Tan, L., Ning, S. X., Zhang, X. W., & Shi, S. N. (2013). Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1. Bioresource Technology, 138, 307–313.

    Article  CAS  Google Scholar 

  • Wang, Y. S., Liu, J. C., Chen, W. C., & Yen, J. H. (2008). Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil. Microbial Ecology, 55, 435–443.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National High Technology Research and Development Program 863 (Grant No. 2011AA10A203), Project of Fujian-Taiwan Joint Center for Ecological Control of Crop Pests (Minjiaoke[2013]51), the National Basic Research Program of China (973 Program) (No. 2010CB933501, 2013CB934302), National Natural Science Foundation of China (21477129), the Outstanding Youth Fund (21125730), and the Leading Talents of Fujian Province College (k8012012a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Chen, H., Pan, X. et al. Investigation of Methylene Blue Biosorption and Biodegradation by Bacillus thuringiensis 016. Water Air Soil Pollut 226, 146 (2015). https://doi.org/10.1007/s11270-015-2417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2417-3

Keywords

Navigation