Skip to main content
Log in

Role of Irrigation with Raw and Artificial Wastewaters on Pesticide Desorption from Two Mediterranean Calcareous Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Irrigation of agricultural soils with low-quality waters, a common practice in arid and semiarid regions, may affect the fate of organic pollutants increasing the risk of groundwater contamination. Desorption of thiacloprid (THC) and fenarimol (FEN) preadsorbed on two calcareous soils (SV, RM3) has been investigated using different solutions: MilliQ water (control), urban treated wastewater (WW), anionic (A22, BP) and non-ionic (TW-80, TX-100) surfactants, dissolved organic matter from sewage sludge (SS-Ph, SS-MQ), and inorganic salt solutions (CaCl2, (NH4)2SO4). WW did not affect in general pesticide desorption. Desorption of THC was significantly enhanced with BP (up to 35.4 % in SV) at concentrations higher that those normally found in WW, while that of FEN was reduced at high concentrations of A22, a fact attributed to precipitation of the surfactant salt with Ca2+ from soils. The non-ionic surfactant TW-80 at levels with environmental relevance (ca. 4–80 mg l−1) drastically enhanced FEN solubilization from soils (an increase between 52 % and 90 %). Inorganic salts in solution in the concentration range studied (5–10 mM) only influenced FEN desorption, but the effect was variable depending on the salt and on the soil. Finally, FEN desorption from RM3 increased linearly with increasing concentrations of SS-MQ (R 2 = 0.994), whereas it decreased as the SS-Ph concentration increased in solution (R 2 = 0.846). It can be concluded that pesticide desorption is mainly controlled by the composition of the irrigation solution, with a higher effect especially on the more hydrophobic compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Artiola, J. F., & Walworth, J. L. (2009). Irrigation water quality effects on soil carbon fractionation and organic carbon dissolution and leaching in a semiarid calcareous soil. Soil Science, 174(7), 365–371.

    Article  CAS  Google Scholar 

  • Barriuso, E., Andrades, M. S., Benoit, P., & Houot, S. (2011). Pesticide desorption from soils facilitated by dissolved organic matter coming from composts: experimental data and modelling approach. Biogeochemistry, 106(1), 117–133.

    Article  Google Scholar 

  • Benke, M. B., Mermut, A. R., & Shariatmadari, H. (1999). Retention of dissolved organic carbon from vinasse by a tropical soil, kaolinite, and Fe-oxides. Geoderma, 91(1–2), 47–63.

    Article  CAS  Google Scholar 

  • Camacho-Muñoz, D., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2014). Occurrence of surfactants in wastewater: hourly and seasonal variations in urban and industrial wastewaters from Seville (Southern Spain). Science of the Total Environment, 468–469, 977–984.

    Article  Google Scholar 

  • Celis, R., Barriuso, E., & Houot, S. (1998). Sorption and desorption of atrazine by sludge-amended soil: dissolved organic matter effects. Journal of Environmental Quality, 27(6), 1348–1356.

    Article  CAS  Google Scholar 

  • CESIO, European Committee of Organic Surfactants and their Intermediates (2012). CESIO surfactant statistics for Western Europe, 5 pp.

  • Chorom, M., & Rengasamy, P. (1995). Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. European Journal of Soil Science, 46(4), 657–665.

    Article  CAS  Google Scholar 

  • Cox, L., Celis, R., Hermosín, M. C., Cornejo, J., Zsolnay, A., & Zeller, K. (2000). Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter. Environmental Science & Technology, 34(21), 4600–4605.

    Article  CAS  Google Scholar 

  • Cox, L., Velarde, P., Cabrera, A., Hermosín, M. C., & Cornejo, J. (2007). Dissolved organic carbon interactions with sorption and leaching of diuron in organic-amended soils. European Journal of Soil Science, 58(3), 714–721.

    Article  CAS  Google Scholar 

  • de Jonge, H., & de Jonge, L. W. (1999). Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil. Chemosphere, 39(5), 753–763.

    Article  Google Scholar 

  • Drori, Y., Aizenshtat, Z., & Chefetz, B. (2005). Sorption–desorption behavior of atrazine in soils irrigated with reclaimed wastewater. Soil Science Society of America Journal, 69(6), 1703–1710.

    Article  CAS  Google Scholar 

  • El Arfaoui, A., Boudescque, S., Sayen, S., & Guillon, E. (2010). Terbumeton and isoproturon adsorption by soils: influence of Ca2+ and K+ cations. Journal of Pesticide Science, 35(2), 131–133.

    Article  Google Scholar 

  • El Arfaoui, A., Sayen, S., Paris, M., Keziou, A., Couderchet, M., & Guillon, E. (2012). Is organic matter alone sufficient to predict isoproturon sorption in calcareous soils? Science of the Total Environment, 432, 251–256.

    Article  Google Scholar 

  • Fernández-Gálvez, J., Gálvez, A., Peña, A., & Mingorance, M. D. (2012). Soil hydrophysical properties resulting from the interaction between organic amendments and water quality in soils from Southeastern Spain — a laboratory experiment. Agricultural Water Management, 104, 104–112.

    Article  Google Scholar 

  • Flores-Céspedes, F., Fernández-Pérez, M., Villafranca-Sánchez, M., & González-Pradas, E. (2006). Cosorption study of organic pollutants and dissolved organic matter in a soil. Environmental Pollution, 142(3), 449–456.

    Article  Google Scholar 

  • González, M., Miglioranza, K. S. B., Aizpún, J. E., Isla, F. I., & Peña, A. (2010). Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere, 81(3), 351–358.

    Article  Google Scholar 

  • Graber, E. R., Dror, I., Bercovich, F. C., & Rosner, M. (2001). Enhanced transport of pesticides in a field trial with treated sewage sludge. Chemosphere, 44(4), 805–811.

    Article  CAS  Google Scholar 

  • Guo, M., & Chorover, J. (2003). Transport and fractionation of dissolved organic matter in soil columns. Soil Science, 168(2), 108–118.

    Article  CAS  Google Scholar 

  • Hernández-Soriano, M. C., Degryse, F., & Smolders, E. (2011). Mechanisms of enhanced mobilisation of trace metals by anionic surfactants in soil. Environmental Pollution, 159(3), 809–816.

    Article  Google Scholar 

  • Hernández-Soriano, M. C., Mingorance, M. D., & Peña, A. (2012). Desorption of two organophosphorous pesticides from soil with wastewater and surfactant solutions. Journal of Environmental Management, 95, S223–S227.

    Article  Google Scholar 

  • Ilani, T., Schulz, E., & Chefetz, B. (2005). Interactions of organic compounds with wastewater dissolved organic matter: role of hydrophobic fractions. Journal of Environmental Quality, 34(2), 552–562.

    Article  CAS  Google Scholar 

  • Krzeminski, P., Iglesias-Obelleiro, A., Madebo, G., Garrido, J. M., van der Graaf, J. H. J. M., & van Lier, J. B. (2012). Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment. Journal of Membrane Science, 423–424, 348–361.

    Article  Google Scholar 

  • Li, K., Xing, B., & Torello, W. A. (2005). Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching. Environmental Pollution, 134(2), 187–194.

    Article  CAS  Google Scholar 

  • Ling, W., Xu, J., & Gao, Y. (2006). Dissolved organic matter enhances the sorption of atrazine by soils. Biology & Fertility of Soils, 42(5), 418–425.

    Article  CAS  Google Scholar 

  • Mandal, U. K., Bhardwaj, A. K., Warrington, D. N., Goldstein, D., Bar Tal, A., & Levy, G. J. (2008). Changes in soil hydraulic conductivity, runoff, and soil loss due to irrigation with different types of saline-sodic water. Geoderma, 144(3–4), 509–516.

    Article  Google Scholar 

  • Mingorance, M. D., Barahona, E., & Fernández-Gálvez, J. (2007). Guidelines for improving organic carbon recovery by the wet oxidation method. Chemosphere, 68(3), 409–413.

    Article  CAS  Google Scholar 

  • Morugán-Coronado, A., García-Orenes, F., Mataix-Solera, J., Arcenegui, V., & Mataix-Beneyto, J. (2011). Short-term effects of treated wastewater irrigation on Mediterranean calcareous soil. Soil & Tillage Research, 112(1), 18–26.

    Article  Google Scholar 

  • Müller, K., Magesan, G. N., & Bolan, N. S. (2007). A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture, Ecosystems & Environment, 120(2–4), 93–116.

    Article  Google Scholar 

  • Müller, K., Duwig, C., Prado, B., Siebe, C., Hidalgo, C., & Etchevers, J. (2012). Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants & Agricultural Wastes, 47(1), 30–41.

    Article  Google Scholar 

  • Navon, R., Hernandez-Ruiz, S., Chorover, J., & Chefetz, B. (2011). Interactions of carbamazepine in soil: effects of dissolved organic matter. Journal of Environmental Quality, 40(3), 942–948.

    Article  CAS  Google Scholar 

  • Qadir, M., Wichelns, D., Raschid-Sally, L., McCornick, P. G., Drechsel, P., Bahri, A., & Minhas, P. S. (2010). The challenges of wastewater irrigation in developing countries. Agricultural Water Management, 97(4), 561–568.

    Article  Google Scholar 

  • Rashad, M., Dultz, S., & Guggenberger, G. (2010). Dissolved organic matter release and retention in an alkaline soil from the Nile River Delta in relation to surface charge and electrolyte type. Geoderma, 158(3–4), 385–391.

    Article  CAS  Google Scholar 

  • Reemtsma, T., Bredow, A., & Gehring, M. (1999). The nature and kinetics of organic matter release from soil by salt solutions. European Journal of Soil Science, 50(1), 53–64.

    Article  CAS  Google Scholar 

  • Rennert, T., Gockel, K. F., & Mansfeldt, T. (2007). Extraction of water-soluble organic matter from mineral horizons of forest soils. Journal of Plant Nutrition & Soil Science, 170(4), 514–521.

    CAS  Google Scholar 

  • Rodríguez-Liébana, J. A., Mingorance, M. D., & Peña, A. (2011). Sorption of hydrophobic pesticides on a Mediterranean soil affected by wastewater, dissolved organic matter and salts. Journal of Environmental Management, 92(3), 650–654.

    Article  Google Scholar 

  • Rodríguez-Liébana, J. A., Mingorance, M. D., & Peña, A. (2013). Pesticide sorption on two contrasting mining soils by addition of organic wastes: effect of organic matter composition and soil solution properties. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 435, 71–77.

    Article  Google Scholar 

  • Rojas, R., Morillo, J., Usero, J., Delgado-Moreno, L., & Gao, J. (2013). Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Science of the Total Environment, 458–460, 614–623.

    Article  Google Scholar 

  • Saab, J., Naccoul, R. A., Stephan, J., Goutaudier, C., Ouaini, R., Mokbel, I., Ouaini, N., & Jose, J. (2010). Mass transfer of carbaryl from pure water to salt aqueous solution: Result comparison between sea and lab-made water. Water, Air, and Soil Pollution, 209(1–4), 241–249.

    Article  CAS  Google Scholar 

  • Saab, J., Bassil, G., Naccoul, R. A., Stephan, J., Mokbel, I., & Jose, J. (2011). Salting-out phenomenon and 1-octanol/water partition coefficient of metalaxyl pesticide. Chemosphere, 82(6), 929–934.

    Article  CAS  Google Scholar 

  • Said-Pullicino, D., Gigliotti, G., & Vella, A. J. (2004). Environmental fate of triasulfuron in soils amended with municipal waste compost. Journal of Environmental Quality, 33(5), 1743–1751.

    Article  CAS  Google Scholar 

  • Sánchez-Camazano, M., Rodríguez-Cruz, S., & Sánchez-Martín, M. (2003). Evaluation of component characteristics of soil–surfactant–herbicide system that affect enhanced desorption of linuron and atrazine preadsorbed by soils. Environmental Science & Technology, 37(12), 2758–2766.

    Article  Google Scholar 

  • Sharer, M., Park, J. H., Voice, T. C., & Boyd, S. A. (2003). Aging effects on the sorption–desorption characteristics of anthropogenic organic compounds in soil. Journal of Environmental Quality, 32(4), 1385–1392.

    Article  CAS  Google Scholar 

  • Spark, K. M., & Swift, R. S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Science of the Total Environment, 298(1–3), 147–161.

    Article  CAS  Google Scholar 

  • Tomlin, C. D. S. (2003). The pesticide manual. Cambridge: British Crop Protection Council.

    Google Scholar 

  • Turner, A. (2003). Salting out of chemicals in estuaries: implications for contaminant partitioning and modelling. Science of the Total Environment, 314–316, 599–612.

    Article  Google Scholar 

  • Walker, A., Rodríguez-Cruz, M. S., & Mitchell, M. J. (2005). Influence of ageing of residues on the availability of herbicides for leaching. Environmental Pollution, 133(1), 43–51.

    Article  CAS  Google Scholar 

  • Wang, P., & Keller, A. A. (2008). Particle-size dependent sorption and desorption of pesticides within a water–soil–nonionic surfactant system. Environmental Science & Technology, 42(9), 3381–3387.

    Article  CAS  Google Scholar 

  • Williams, C. F., Letey, J., & Farmer, W. J. (2006). Estimating the potential for facilitated transport of napropamide by dissolved organic matter. Soil Science Society of America Journal, 70(1), 24–30.

    Article  CAS  Google Scholar 

  • Xu, J., Yuan, X., & Dai, S. (2006). Effect of surfactants on desorption of aldicarb from spiked soil. Chemosphere, 62(10), 1630–1635.

    Article  CAS  Google Scholar 

  • Zheng, G., Selvam, A., & Wong, J. W. C. (2012). Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant. Environmental Science & Technology, 46(21), 12062–12068.

  • Zhou, W., & Zhu, L. (2007). Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant. Environmental Pollution, 147(2), 350–357.

    Article  CAS  Google Scholar 

  • Zsolnay, A. (2003). Dissolved organic matter: artefacts, definitions, and functions. Geoderma, 113(3–4), 187–209.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is integrated in the Project “Wastewater for irrigation: availability of contaminants associated with the organic matter and surfactants” (project reference CGL2007-60355) financed by the CICYT and cofinanced by European Feder funds. J.A. Rodríguez-Liébana thanks the CSIC for a predoctoral fellowship (JAE-Pre), co-financed by ESF. We also thank the WW treatment plant in Granada (EMASAGRA) for providing WW and sewage sludge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Rodríguez-Liébana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Liébana, J.A., Mingorance, M.D. & Peña, A. Role of Irrigation with Raw and Artificial Wastewaters on Pesticide Desorption from Two Mediterranean Calcareous Soils. Water Air Soil Pollut 225, 2049 (2014). https://doi.org/10.1007/s11270-014-2049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2049-z

Keywords

Navigation