Skip to main content
Log in

Characterization of Five Chromium-Removing Bacteria Isolated from Chromium-Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The potential for bioremediation of chromium pollution using bacteria was investigated in this study. Five chromium-removing bacteria strains were successfully isolated from Cr(VI)contaminated soils and identified by their 16S rRNA gene sequences. The optimum growth temperature (30–40 °C) and pH (8.5–11) for the five isolates were investigated. The effect of initial Cr(VI) concentrations (0–1,575 mg L−1) on bacterial growth was also studied. Results showed that Pseudochrobactrum saccharolyticum strain W1 had high chromium-removing ability and could grow at Cr(VI) concentrations from 0 to 1,225 mg L−1. To our knowledge, this is the first report of chromium removal by a member of the Pseudochrobactrum genus. Sporosarcina saromensis W5 had the highest chromium-removing rate of 0.79 mg h−1 mg−1 biomass. Exopolysaccharide (EPS) production and components of the five bacteria strains were also investigated, and a positive relationship was found between the bacterial chromium removal and EPS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badar, U., Ahmed, N., Beswick, A., Pattanapipitpaisal, P., & Macaskie, L. (2000). Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan. Biotechnology Letters, 22(10), 829–836.

    Article  CAS  Google Scholar 

  • Bafana, A. (2011). Mercury resistance in Sporosarcina sp. G3. Biometals, 24(2), 301–309.

    Article  CAS  Google Scholar 

  • Camargo, F., Okeke, F., & Frankenberger, B. (2003). Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. Journal of Environmental Quality, 32(4), 1228–1233.

    Article  CAS  Google Scholar 

  • Camargo, F. A. O., Okeke, B. C., Bento, F. M., & Frankenberger, W. T. (2005). Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate. Applied Soil Ecology, 29(2), 193–202.

    Article  Google Scholar 

  • Chen, J., Tang, Y.-Q., & Wu, X.-L. (2012). Bacterial community shift in two sectors of a tannery plant and its Cr (VI) removing potential. Geomicrobiology Journal, 29(3), 226–235.

    Google Scholar 

  • Desai, C., Parikh, R. Y., Vaishnav, T., Shouche, Y. S., & Madamwar, D. (2009). Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Research In Microbiology, 160(1), 1–9.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  • Fein, J. B., Fowle, D. A., Cahill, J., Kemner, K., Boyanov, M., & Bunker, B. (2002). Nonmetabolic reduction of Cr (VI) by bacterial surfaces under nutrient-absent conditions. Geomicrobiology Journal, 19(3), 369–382.

    Article  CAS  Google Scholar 

  • Fendorf, S. E. (1995). Surface reactions of chromium in soils and waters. Geoderma, 67(1–2), 55–71.

    Article  CAS  Google Scholar 

  • Francisco, R., Alpoim, M., & Morais, P. (2002). Diversity of chromium resistant and reducing bacteria in a chromium contaminated activated sludge. Journal of Applied Microbiology, 92(5), 837–843.

    Article  CAS  Google Scholar 

  • Freire-Nordi, C. S., Vieira, A. A. H., & Nascimento, O. R. (2005). The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochemistry, 40(6), 2215–2224.

    Article  CAS  Google Scholar 

  • Gehrke, T., Telegdi, J., Thierry, D., & Sand, W. (1998). Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Applied And Environmental Microbiology, 64(7), 2743–2747.

    CAS  Google Scholar 

  • He, Z., Gao, F., Sha, T., Hu, Y., & He, C. (2009). Isolation and characterization of a Cr (VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. Journal of Hazardous Materials, 163(2–3), 869–873.

    Article  CAS  Google Scholar 

  • Ilhan, S., Nurbas, M., Kiliarslan, S., & Ozdag, H. (2004). Removal of chromium, lead and copper ions from industrial waste waters by Staphylococcus saprophyticus. Turkish Electronic Journal Biotechnology, 2, 50–57.

    Google Scholar 

  • Jacobs, J. A., & Testa, S. M. (2005). Overview of chromium (VI) in the environment: background and history. In J. Guertin, J. A. Jacobs, & C. P. Avakian (Eds.), Chromium (VI) Handbook (pp. 1–21). Boca Raton: CRC Press.

    Google Scholar 

  • Kampfer, P., Rossello-Mora, R., Scholz, H. C., Welinder-Olsson, C., Falsen, E., & Busse, H. J. (2006). Description of Pseudochrobactrum gen. nov., with the two species Pseudochrobactrum asaccharolyticum sp. nov. and Pseudochrobactrum saccharolyticum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 56(8), 1823–1829.

    Article  Google Scholar 

  • Kampfer, P., Scholz, H., Huber, B., Thummes, K., Busse, H. J., Maas, E. W., et al. (2007). Description of Pseudochrobactrum kiredjianiae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 57(4), 755–760.

    Article  Google Scholar 

  • Kampfer, P., Huber, B., Lodders, N., Warfolomeow, I., Busse, H. J., & Scholz, H. C. (2009). Pseudochrobactrum lubricantis sp. nov., isolated from a metal-working fluid. International Journal of Systematic and Evolutionary Microbiology, 59(10), 2464–2467.

    Article  Google Scholar 

  • Karkhanis, Y. D., Zeltner, J. Y., Jackson, J. J., & Carlo, D. J. (1978). A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Analytical Biochemistry, 85(2), 595–601.

    Article  CAS  Google Scholar 

  • Kiran, B., & Kaushik, A. (2008). Chromium binding capacity of Lyngbya putealis exopolysaccharides. Biochemical Engineering Journal, 38(1), 47–54.

    Article  CAS  Google Scholar 

  • Liu, H., & Fang, H. H. (2002). Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnology and Bioengineering, 80(7), 806–811.

    Article  CAS  Google Scholar 

  • Liu, Y. G., Xu, W. H., Zeng, G. M., Li, X., & Gao, H. (2006). Cr (VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochemistry, 41(9), 1981–1986.

    Article  CAS  Google Scholar 

  • McEldowney, S. (2000). The impact of surface attachment on cadmium accumulation by Pseudomonas fluorescens H2. Fems Microbiology Ecology, 33(2), 121–128.

    Article  CAS  Google Scholar 

  • McLean, J., & Beveridge, T. J. (2001). Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Applied and Environmental Microbiology, 67(3), 1076–1084.

    Article  CAS  Google Scholar 

  • Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47(1), 51–54.

    Article  CAS  Google Scholar 

  • Middleton, S. S., Latmani, R. B., Mackey, M. R., Ellisman, M. H., Tebo, B. M., & Criddle, C. S. (2003). Cometabolism of Cr (VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnology and Bioengineering, 83(6), 627–637.

    Article  CAS  Google Scholar 

  • Mistry, K., Desai, C., Lal, S., Patel, K., & Patel, B. (2010). Hexavalent chromium reduction by Staphylococcus sp. isolated from Cr(VI) contaminated land fill. International Journal of Biotechnology and Biochemistry, 6(1), 117–129.

    Google Scholar 

  • Molokwane, P. E., Meli, K. C., & Nkhalambayausi-Chirwa, E. M. (2008). Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Research, 42(17), 4538–4548.

    Article  CAS  Google Scholar 

  • Nguema, P. F., & Luo, Z. (2012). Aerobic chromium (VI) reduction by chromium-resistant bacteria isolated from activated sludge. Annals of Microbiology, 62(1), 41–47.

    Article  CAS  Google Scholar 

  • Ozturk, S., & Aslim, B. (2008). Relationship between chromium (VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates. Environmental Science and Pollution Research, 15(6), 478–480.

    Article  CAS  Google Scholar 

  • Ozturk, S., Aslim, B., & Suludere, Z. (2009). Evaluation of chromium (VI) removal behaviour by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresource Technology, 100(23), 5588–5593.

    Article  CAS  Google Scholar 

  • Pal, A., & Paul, A. (2004). Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiological Research, 159(4), 347–354.

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal, P., Brown, N., & Macaskie, L. (2001). Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnology Letters, 23(1), 61–65.

    Article  CAS  Google Scholar 

  • Philip, L., Iyengar, L., & Venkobachar, C. (1998). Cr (VI) reduction by Bacillus coagulans isolated from contaminated soils. Journal of Environmental Engineering, 124(12), 1165–1170.

    Article  CAS  Google Scholar 

  • Priester, J. H., Olson, S. G., Webb, S. M., Neu, M. P., Hersman, L. E., & Holden, P. A. (2006). Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Applied and Environmental Microbiology, 72(3), 1988–1996.

    Article  CAS  Google Scholar 

  • Raja, C. E., Anbazhagan, K., & Selvam, G. S. (2006). Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World Journal of Microbiology and Biotechnology, 22(6), 577–585.

    Article  CAS  Google Scholar 

  • Romanenko, L. A., Tanaka, N., Frolova, G. M., & Mikhailov, V. V. (2008). Pseudochrobactrum glaciei sp. nov., isolated from sea ice collected from Peter the Great Bay of the Sea of Japan. International Journal of Systematic and Evolutionary Microbiology, 58(10), 2454–2458.

    Article  CAS  Google Scholar 

  • Srinath, T., Verma, T., Ramteke, P., & Garg, S. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48(4), 427–435.

    Article  CAS  Google Scholar 

  • Stanin, F. T. (2005). The transport and fate of chromium (VI) in the environment. In J. Guertin, J. A. Jacobs, & C. P. Avakian (Eds.), Chromium (VI) handbook (pp. 165–214). Boca Raton: CRC Press.

    Google Scholar 

  • Stewart, D. I., Burke, I. T., Hughes-Berry, D., & Whittleston, R. (2008). Microbially-mediated chromate reduction in highly alkaline groundwater systems. Paper presented at the 1st International BioGeoCivil Engineering Conference, Delft, The Netherlands, 23–25 June.

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.

    Article  CAS  Google Scholar 

  • Thacker, U., Parikh, R., Shouche, Y., & Madamwar, D. (2006). Hexavalent chromium reduction by Providencia sp. Process Biochemistry, 41(6), 1332–1337.

    Article  CAS  Google Scholar 

  • Torino, M., Taranto, M., Sesma, F., & De Valdez, G. (2001). Heterofermentative pattern and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in response to environmental pH. Journal of Applied Microbiology, 91(5), 846–852.

    Article  CAS  Google Scholar 

  • Viti, C., Pace, A., & Giovannetti, L. (2003). Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Current Microbiology, 46(1), 1–5.

    Article  CAS  Google Scholar 

  • Wang, Y. T., & Xiao, C. (1995). Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Research, 29(11), 2467–2474.

    Article  CAS  Google Scholar 

  • Wang, G., Huang, L., & Zhang, Y. (2008). Cathodic reduction of hexavalent chromium [Cr (VI)] coupled with electricity generation in microbial fuel cells. Biotechnology Letters, 30(11), 1959–1966.

    Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703.

    CAS  Google Scholar 

  • Wu, Y., Xia, L., Yu, Z., Shabbir, S., & Kerr, P. G. (2014). In situ bioremediation of surface waters by periphytons. Bioresource Technology, 151, 367–372.

    Article  CAS  Google Scholar 

  • Yao, Y., Guan, J., Tang, P., Jiao, H., Lin, C., Wang, J., et al. (2010). Assessment of toxicity of tetrahydrofuran on the microbial community in activated sludge. Bioresource Technology, 101(14), 5213–5221.

    Google Scholar 

  • Yewalkar, S. N., Dhumal, K. N., & Sainis, J. K. (2007). Chromium (VI)-reducing Chlorella spp. isolated from disposal sites of paper-pulp and electroplating industry. Journal of Applied Phycology, 19(5), 459–465.

    Article  CAS  Google Scholar 

  • Yumoto, I., Hirota, K., Nodasaka, Y., & Nakajima, K. (2005). Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. International Journal of Systematic and Evolutionary Microbiology, 55(4), 1521–1524.

    Article  CAS  Google Scholar 

  • Zhu, W., Yang, Z., Ma, Z., & Chai, L. (2008). Reduction of high concentrations of chromate by Leucobacter sp. CRB1 isolated from Changsha, China. World Journal of Microbiology and Biotechnology, 24(7), 991–996.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Allyson Brady at the University of Calgary for her help in improving the paper. This work was financially supported by the National Natural Science Foundation of China (no. 31370053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Z., Li, S., Wang, L. et al. Characterization of Five Chromium-Removing Bacteria Isolated from Chromium-Contaminated Soil. Water Air Soil Pollut 225, 1904 (2014). https://doi.org/10.1007/s11270-014-1904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1904-2

Keywords

Navigation