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Abstract Microorganisms are abundant in many sur-
face and near-surface geochemical environments. They
interact with arsenic through a variety of mechanisms,
including sorption, mobilisation, precipitation and redox
and methylation transformation; sometimes, this is to
their benefit, while other times it is to their detriment,
substantially affecting the fate and transport of arsenic in
the environment. Here, an attempt was made to review
the current state of knowledge concerning microbial
influences on arsenic transformation and retention pro-
cesses at the water—solid interface with the goal to
elucidate the ability of microorganisms to react with
arsenic, and to quantify the role of microorganisms in
the biogeochemical arsenic cycle. Such knowledge is
indispensable for comprehensive understanding arsenic
behaviour in the environment and support accurate
assessment of the threat of arsenic contamination
to human and environmental health, as well as for
the development of novel technologies for arsenic
bioremediation.
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1 Introduction

Arsenic (As) is one of the most toxic elements and a
non-threshold class 1 carcinogen (Vahidnia et al. 2007).
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There is increasing evidence of cancer risk associated
with chronic exposure of low levels of As (Cantor,
1996). Today, elevated As concentrations represent a
major water quality and health problem for millions of
people worldwide (Bundschuh et al. 2012; Nordstrom
2002; Smedley and Kinniburgh 2002). Naturally high
concentrations of As in surface and ground waters may
be due to geothermal sources or from the dissolution of
As-bearing minerals in soils and sediments, whereas
anthropogenic inputs result from emissions of mining
and smelting activities (Bissen and Frimmel 2003;
Fendorf et al. 2010a; Smedley and Kinniburgh 2002).
In comparison, immobilisation of As in the environment
occurs predominately by sequestration to soil and sedi-
ment solid phases (Fendorf et al. 2010b; Smedley and
Kinniburgh 2002).

Although the possibility of a “new As form of life” is
highly controversial, the significance of As in life sci-
ence has drawn much public attention (Parke 2013;
Wolfe-Simon et al. 2011). Microorganisms constitute
the majority of all living matter on Earth (Toner et al.
2006) and, as such, form a foundational component of
the entirety of Earth’s environment, along with the lith-
osphere, soils, oceans and the atmosphere. Microorgan-
isms play a major role in driving, along with the inani-
mate Earth, biogeochemical cycles, which involve the
most fundamental underlying aspects of our entire en-
vironment, namely electron and elemental transfer
among all of the compartments of the Earth’s environ-
mental systems (Tamaki and Frankenberger, 1992). The
result is the unmistakable influence of microorganisms
on, for example nitrogen and carbon cycling, mineral
growth and dissolution, biological nutrient fluxes, and
on a larger scale, ocean and atmospheric chemistry.
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Modification of microbial composition and activity can
have consequences on local, regional and global scales.

The fate of As released into geochemical environments
is determined by a complex interplay among processes of
As mobilisation, sequestration and transformation, most of
which are directly or indirectly driven by microbial activ-
ity. There are already plenty of researches focussing on
understanding the behaviour of As in different compart-
ments of the surface and subsurface environment (see
review articles, e.g. Cullen and Reimer 1989; Mandal
and Suzuki 2002; Smedley and Kinniburgh 2002). On
the other hand, many efforts were focussed on
characterising the ability of microorganism to interact with
As, e.g. respiratory oxidation and reduction and methyla-
tion, and the corresponding physiological mechanisms (see
review articles e.g. Dhuldhaj et al. 2013; Lloyd and
Oremland 2006; Mukhopadhyay et al. 2002; Paez-
Espino et al. 2009; Silver and Phung 2005; Slyemi and
Bonnefoy 2012; Tsai et al. 2009). Studies on microbial
diversity in natural samples to estimate As behaviour are
also abundant (e.g. Fan et al. 2008; Meyer-Dombard et al.
2013; Tomczyk-Zak et al. 2013). However, comparably
few studies have been aimed at truly understanding the
linkage between microbial activities and As geochemistry
in the environment, especially for the natural system.
These studies were achieved by investigating As geochem-
istry in parallel with microbiology and molecule ecology in
more depth instead of only comparing the sterile control or
just adding organic substances to stimulate certain micro-
bial activities, thereby enabling identification of the link
between microorganisms and As geochemistry with strong
evidence. For example, Islam et al. (2004) showed that As
release from the sediments of West Bengal delta occurred
along with Fe(Ill) and arsenate (As(V)) reduction in the
presence of Clostridium species (involved in As(V) reduc-
tion), and Geobacter species (involved in Fe(Ill) reduc-
tion). Both Fe(IIT) and As(V) reduction were stimulated by
spiking additional acetate and at the same time as a re-
markable shift in the microbial population, with increased
numbers of the family Geobacteraceae from 11 to 70 % of
total clones analysed. The linkage of microorganism-
driven As(V) reduction with As mobilisation in paddy
soils was evidenced by the highly frequent presence of
respiratory As(V) reductase gene (arrA) and, on the other
hand, by the observation of As released in the sterile soil
inoculated with an As(V) reducing bacterium, Geobacter
sp. OR-1, which was isolated from the same soil (Ohtsuka
et al. 2013). Methylation of As in paddy soils was sug-
gested to be a microbial-mediated process based on the
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high phylogenetic diversity of microorganism containing
arsM genes in soils and the positive correlation between
the concentrations of methyl As species and the abundance
of the arsM gene in the soil (Jia et al. 2013). One of the
most careful studies done on the linkage between As
geochemistry and microbial activities may be that by
Demergasso et al. (2007). The involvement of microbial
activities in the precipitation process of As sulphides in
Andean salt flats in northern Chile was demonstrated from
several different aspects: (1) the enrichment and isolation
of microbial cultures with As precipitation capacity from
As mineral samples, (2) the high abundance of As-
precipitating bacteria found in the Andean minerals and
brines, (3) the similarities in stoichiometry between natural
and laboratory obtained biogenic sulphide minerals, and
(4) the consistent depletion in &°*S values for natural
versus laboratory obtained sulphides.

The aforementioned studies on natural systems clear-
ly revealed that microorganisms are the major player to
drive the As cycling in the surface environment. In
comparison, the model incubations under well-defined
experimental conditions are able to better define the
influence of microbial processes on As biogeochemical
behaviour, the current state of knowledge of which will
be reviewed in the following sections. Thus, the goal of
this review article is to provide a comprehensive over-
view on the interplay between microorganisms and As
geochemistry, which includes physical interactions with
microbial cells, microorganism-mediated chemical
transformation and processes induced by other microbial
processes. This review provides a junction between the
geochemical behaviour of As, microorganism-mediated
process reactions and microbial matrix-mediated interac-
tions with As. The knowledge generated here on As
behaviour in the environment is essential for accurate
assessment of the threat of As contamination to human
and environmental health, as well as for the development
of novel technologies for bioremediation of As-
contaminated soils and sediments.

2 Microbial Intracellular and Extracellular
Sequestration

There seems to be no specific As uptake pathway for
microorganisms since As does not play any metabolic or
nutrimental role in the cell cytoplasm (Tsai et al. 2009).
Arsenic enters cells via existing transporting systems,
such as phosphate transport for As(V), due to the similar
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chemical structure (Tsai et al., 2009). Arsenite (As(III))
mostly presents as the noncharged form at environmen-
tal and physiological pH. Thus, the aquoporin transport-
er may be responsible for As(III) entering cells. There-
fore, microorganisms develop different strategies to de-
toxify intracellular cells by either excluding As from the
cell or binding As in cells (Fig. 1). The extracellular
polymeric substance (EPS) matrix on the cell surface
can act as a molecular sieve, sequestering cations, an-
ions, apolar compounds and particles from the water
phase (Flemming and Wingender 2010). The EPS con-
tains apolar regions, groups with hydrogen-bonding
potential, anionic groups (e.g. in uronic acids and pro-
teins) and cationic groups (e.g. in amino sugars) (Poli
et al. 2011). Owing to this stickiness of the matrix,
particles and nanoparticles can be trapped and accumu-
lated. Interestingly, heavy metals such as Zn**, Cd** and
Ni** bind to the cell walls of bacteria, whereas hydro-
phobic compounds such as benzene, toluene and xylene
are present in the matrix (Flemming and Wingender
2010). Thus, it is plausible that microorganisms have
physical interactions with As both intra- and extra-
cellularly. In this section, the potential of microbial
intra- and extracellular physical interaction is discussed,
including biosorption, bioaccumulation and the influ-
ence of the cell surface on As sorption.

2.1 Biosorption

To date, most knowledge related to the retention of trace
elements on the microbial cell surface is focussed on
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cationic elements (Gadd 2009). Recent growing interest
in the biosorption of As species with microorganisms has
enabled an insight in more depth into the interaction be-
tween As and the microbial cell surface (Giri et al. 2013;
Miyatake and Hayashi 2011; Prasad et al. 2011; Yan et al.
2010). The sorption of As(III), As(V) and
monomethylarsonic acid has been evidenced with Bacillus
subtilis (Hossain and Anantharaman 2006), Bacillus cere-
us (Giri et al. 2013), Acidithiobacillus ferrooxidans (Gmaxs
0.19 mg g ' for As(Ill) and 0.22 mg g ' for
monomethylarsonic acid at pH 4) (Chandraprabha and
Natarajan 2011; Yan et al. 2010), Rhodococcus sp. WB-
12 (Gmax, 77.3 mg g ' for As(III) at pH 7.0) (Prasad et al.
2011), Halobacterium saccharovorum, Halobacterium
salinarium and Natronobacterium gregoryi (Williams
et al. 2013). Sorption of As to bacterial cell surface was
indicated in the form of electrostatic interaction involving
hydroxyl, amide and amino groups on the microorganism
surface (Giri et al. 2013; Prasad et al. 2011; Yan et al.
2010). Such interaction is pH dependent and was ex-
plained by variable surface charge behaviour with chang-
ing pH (Giri et al. 2013). In the case of living Bacillus
cereus, the highest As(Ill) adsorption content was at
pH 7.5 (Giri et al. 2013). Similarly, characterising the pH
dependent As(V) and As(III) sorption behaviour onto dry
B. cereus W2 and Rhodococcus sp. WB-12 showed the
highest adsorption extents for both As species at around
pH 7 (Miyatake and Hayashi 2011; Prasad et al. 2011).
Thermodynamic characterisation based on the investiga-
tions from 15 and 20 to 40 °C of living B. cereus and
A. ferrooxidans BY-3 revealed that this sorption process is
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Fig. 1 Overview of the interaction between microorganism and arsenic compounds
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spontaneous and endothermic with a usually higher sorp-
tion extent observed at higher temperatures (Giri et al.
2013; Yan et al. 2010). On the other hand, As(IIT) and
As(V) adsorption capacities onto dry B. cereus W2 cells
first increased from 20 to 30 °C and thereafter decreased
from 30 to 60 °C (Miyatake and Hayashi 2011). Whether
the living status of microbial cells plays a role in such
discrepancies is not clear. Giri et al. (2013) proposed the
formation of an inner-sphere complex between As(III) and
the surface of B. cereus in the neutral pH range; however,
further research is required to prove this hypothesis.
Among different As species, monomethylarsonic acid
sorption was favoured over As(IIl) at the surface of
A. ferrooxidans (Yan et al. 2010). Chandraprabha and
Natarajan (2011) highlighted another As binding mecha-
nism to the cell surface via the precipitation of As(V) by
Fe(II) present in the EPS of ferrous grown A. ferrooxidans.
The formation of nano-particled amorphous Fe
(hydr)oxides precipitating on the cell surface by adding
Fe(IlT) may also largely increase the As(Ill) and As(V)
sorption capacity via the formation of inner-sphere com-
plexes (Yang et al. 2012).

2.2 Microbial Competitive Adsorption

Microbial cells attached to minerals facilitate a series of
reactions ranging from the retardation of toxins
adsorbed to their surface, to the accelerated weathering
of minerals (Dong 2010). Recently, microbial attach-
ment to minerals was identified as an important factor
leading to the increased solubility of As(V) via compe-
tition between As(V) and bacterial phosphate and car-
boxylate groups for Fe(IlI)-(oxyhydr)oxide surface sites
(Huang et al. 2011a). Conversely, Kim et al. (2010)
indicated a negligible influence of the bacterial cells of
Enterococcus faecalis, Escherichia coli and B. subtilis
on As(Ill) and As(V) adsorption to Fe-impregnated
granular activated carbon. One potential explanation is
the lower cell density (10° CFU mL ") used in the study
by Kim et al. (2010) compared to that used in Huang
et al. (2011a) (5x10° cells mL"). Whether the differ-
ence of bacterial strains plays an important role, howev-
er, remains an open question.

2.3 Bioaccumulation
Although there is wide distribution of As-resistant mi-

croorganisms in the environment, comparably small
amounts of microorganisms are known to hyper-
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accumulate As (non-genetically engineered microorgan-
isms) (Xie et al. 2013). Different from biosorption,
bioaccumulation infers intracellular accumulation of
As in, e.g. cell membranes and cytoplasm instead of at
the cell surface (Joshi et al. 2009; Takeuchi et al. 2007,
Xie et al. 2013). Usually, an effective strategy to bind As
intracellularly is required to tolerate high amounts of As
in cells aside from the classical ars operon detoxifica-
tion, which pumps As out of the cell after reduction.
Microorganisms may take advantage of several different
strategies to bind As in cells such as the formation of
As(IIT) complexes with chelating proteins or peptides
containing thiol groups. For example, the
metalloregulatory protein ArsR offers high affinity and
selectivity toward As(III), which was used in engineered
bacterial cells to accumulate As (Kostal et al. 2004). In
the case of Bacillus sp. strain DJ-1, which accumulates
Aslevels ofupto 9.8 mg g ' (dry weight), this occurs by
binding As with the DNA protection during starvation
protein using not only interaction with thiol but also
ionic interactions with amino acids (Joshi et al. 2009).

3 Microbial Arsenic Transformation

Major transformations of As in the environment include
microbial oxidation, reduction, methylation and demeth-
ylation (Fig. 1). These transformation reactions have an
enormous impact on the environmental behaviour of As,
as the different chemical forms of As exhibit different
mobility [methyl As(IIT)>>methyl As(V)>As(III)>
As(V)] (Lafferty and Loeppert 2005), toxicity [methyl
As(IID)>As(IIT)>As(V)>methyl As(V)] (Petrick et al.
2000) and susceptibility to plant uptake [e.g. uptake by
the rice root As(IIl)>monomethyl As(V)>dimethyl
As(V)] (Abedin et al. 2002). Generally, As transforma-
tion in the environment is mostly biotic (Meng et al.
2003). Abiotic transformation of As has been shown to
be substantially slower and is believed to be less impor-
tant than microbially mediated reduction (Ahmann et al.
1997; Jones et al. 2000; Newman et al. 1997b). For
example, the reduction of As(V) by sulphide was kinet-
ically much slower than As(V) reduction by
Desulfotomaculum auripigmentum strain OREX-4, and
thiosulphate and sulphite showed negligible reductions of
As(V) (Newman et al. 1997b). Thermus aquaticus and
Thermus thermophilus have been shown to oxidise
As(IIT) to As(V) 100-fold faster than abiotic controls in
laboratory experiments (Gihring et al. 2001). The
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mechanisms and physiological aspects related to micro-
bial As transformation have been detailed in many review
articles (Kruger et al. 2013; Lloyd and Oremland 2006;
Mukhopadhyay et al. 2002; Paez-Espino et al. 2009;
Silver and Phung 2005). Thus, this section will focus on
the knowledge concerning the interplay between micro-
bial As transformation and its geochemical behaviour.

3.1 Arsenite Oxidation

Microbial As(IIT) oxidation is a potential detoxification
process that allows microorganism to tolerate higher
As(IIT) levels (Paez-Espino et al. 2009; Tamaki and
Frankenberger 1992). Additionally, As(IlI) oxidation
may serve as an electron donor for microbial respiration
in combination with O, or nitrate under oxic and anoxic
conditions (Paez-Espino et al. 2009). Arsenite oxidation
is catalysed by a wide range of microorganisms, e.g.
Alcaligenes faecalis, Hydrogenophaga sp.,
A. ferrooxidans, T. aquaticus, T. thermophilus, etc.
(Gihring et al. 2001; Oremland and Stolz 2003; Stolz
et al. 2006; Wang and Zhao 2009). The major impact of
microbial oxidation of As(III) to As(V) is to reduce As
mobility in the environment as the affinity of As(V) to
mineral solids is usually higher than that of As(III)
(Dixit and Hering 2003; Huang et al. 2011c; Smedley
and Kinniburgh 2002). Microbial As(IIT) oxidation has
been proposed for As removal from polluted water
(Cavalca et al. 2013; Tto et al. 2012). Arsenic immobi-
lisation enhanced by the simultaneous microbial oxida-
tion of As(Ill) and Fe(II) has been considered as a
potential bioremediation strategy of As in anoxic envi-
ronment. This is based on the formation of Fe(III)
(hydr)oxides, which adsorbed As(V) formed from
As(IIT) oxidation (Inskeep et al. 2004; Sun 2008).

3.2 Arsenate Reduction

Reduction of As(V) generally indicates an increase in
As mobility in the natural environment, as As(IIl) is
generally more mobile than As(V) (Ahmann et al.
1997; Smedley and Kinniburgh 2002). Microbial reduc-
tion of As(V) may occur via respiratory reduction, as
microorganisms use As(V) as the terminal electron ac-
ceptor in anaerobic respiration (Lloyd and Oremland
2006; Mukhopadhyay et al. 2002; Stolz et al. 2002,
2006), e.g. bacteria (Sulfurospirillum barnesii, Bacillus
arsenicoselenatis, Bacillus selenitireducens,
Sulfurospirillum arsenophilum, Desulfotomaculum

auripigmentum, Chrysiogenes arsenatis and
Desulfomicrobium strain Ben-RB) (Macy et al. 2000;
Newman et al. 1998, 1997b; Stolz and Oremland 1999)
and hyperthermophilic archaea (Pyrobaculum
arsenaticum and Pyrobaculum aerophilum) (Huber
etal., 2000). Another mechanism of microbial reduction
of As(V) to As(Ill) is through detoxification (Langner
and Inskeep 2000; Stolz et al. 2002). Arsenic detoxifi-
cation has been documented in E. coli, Staphylococcus
aureus and Staphylococcus xylosis, and is controlled by
ars genes that encode for As(V) (Cervantes et al. 1994;
Tamaki and Frankenberger 1992). Arsenate detoxifying
reducing bacteria were found to play a major role in As
mobilisation under oxic conditions. In the flooding soil
amended with citrate, strong As mobilisation was ob-
served at the beginning of incubation when oxic condi-
tions prevailed (Eh>250 mV) (Corsini et al. 2010). The
predominant As(IIl) appearance in soil solution ap-
peared to be due to the detoxifying activity of As-
resistant bacteria with ars genes, which were identified
as Bacillus and Pseudomonas spp. Nevertheless, As(V)
became prevalent as a consequence of As liberation
driven by reductive dissolution of Mn and Fe
(hydr)oxides by Geobacter spp. and inhibiting the growth
and activity of As(V)-resistant bacteria. Apparently, there
was a lack of As(V) respiratory reducing bacteria in the
aforementioned soils. Studies of Shewanella strain ANA-
3 with or without ArrA suggest that ArsC does not
contribute significantly to total As(V) reduction when
soluble As(V) concentrations are in the low micromolar
range and the reduction kinetics of As(V) was much
faster via respiration than detoxification (Campbell et al.
2006; Malasarn et al. 2004).

Respiratory As(V) reduction has been shown to be
capable of mobilising solid associated As(V), including
adsorbed and mineral As(V) (Babechuk et al. 2009;
Huang et al. 2011c; Zobrist et al. 2000). The rate of
As(V) reduction is known to be influenced by the binding
forms in which As(V) became associated with the min-
eral phases and coupled strongly with As(V) adsorption
and desorption rates. The microbial As(V) reduction rate
was found to decrease in the order: dissolved >>As(V)
added to ferrihydrite suspensions at the start of the incu-
bation>As(V) reacted with ferrihydrite for 24 h before
incubation>As(V) co-precipitated during ferrihydrite
synthesis (Zobrist et al. 2000). Microbial As(V) reduction
kinetics studies undertaken in mineral suspensions with-
out growth medium highlight that the presence of mineral
sorbents resulted in pronounced decreases in reduction
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rates and the magnitude of this effect increased with
increasing sorbent concentration and sorption capacity
(Huang et al. 2011d). Due to the very low affinity of
As(1I) to Al (hydr)oxides, As(V) reduction to As(III) will
largely enhance the solubility of As at the water—Al
(hydr)oxide interface. Reductive dissolution of Al-
ferrihydrite by Shewanella sp. ANA-3 results in the en-
richment of Al sites and As(V) reduction accelerates As
release due to the low affinity of As(Il) on these non-
ferric sites (Masue-Slowey et al. 2011).

Malasarn et al. (2008) characterised in detail the
location of Shewanella sp. strain ANA-3 As(V) respira-
tory reductase, showing that the enzyme localises to the
periplasm in intact cells. Since direct contact between
enzyme and substrate is necessary for reaction, this
finding suggests that microbial respiratory reduction of
solid associated As(V) is infeasible. However, the au-
thors have verified the release of As(V) reductase from
ANA-3 into the surrounding environment and the fact
that this remains active for a while, which is suggested
to be a general phenomenon of As(V) respiratory-
reducing bacteria. The presence of cell-free ARR in
the environment may be relevant if electron donors with
sufficiently low redox potentials are present to allow the
enzyme to catalyse As(V) reduction. Redox active small
molecules, including natural products, could possibly
serve this purpose, although this hypothesis has yet to
be tested. Respiratory As(V) reduction may inhibit or be
inhibited by the other redox processes. Nitrate inhibited
As(V) reduction by nitrate reduction as a preferred
respiratory electron acceptor rather than as a structural
analogue of As(V). Bacterial sulphate reduction was
completely inhibited by As(V) reduction as well as by
As(IIT) (Dowdle et al. 1996). D. auripigmentum strain
OREX-4 was shown to be able to respiratory-reduce
As(V) and sulphate, but was found to prefer sulphate
(Newman et al. 1997b).

3.3 Methylation

Biogenic As volatilisation was budgeted as the input at
26,000 t year ', accounting for 58 % of natural emis-
sions and 36 % of total As emission (Chilvers and
Peterson 1987). Arsenic methylation was demonstrated
by different aerobic and anaerobic microorganisms
(Table 1) (Kuehnelt and Goessler 2003). Until 2006,
there have been more than 125 bacterial and 16 archaeal
ArsM homologues identified (Qin et al. 2006) and more
microorganisms capable of As methylation are
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expected. Microbial methylation allows the transforma-
tion of aqueous- or solid-associated inorganic As into
gaseous arsines and leaves from the living medium,
which is usually regarded as a detoxification (Jia et al.
2013). The gaseous arsines are highly mobile in com-
parison to aqueous As and may undergo long-distance
transport in the atmosphere (Mukai et al. 1986). The
formation of aqueous trivalent and pentavalent methyl
As were also reported and was considered mobilisation
due to the lower adsorption affinity of methylated As
than inorganic As (Huang and Matzner 2006; Lafferty
and Loeppert 2005). Low redox potentials (i.e. reducing
conditions) promote the production and mobilisation of
methylated As (Frohne et al. 2011). Under reducing
conditions, the reductive dissolution of Fe/Mn
(hydr)oxide mineral sorbents and the reduction of As(V)
to As(IlI) may increase the levels of dissolved As in soils
and sediments (Bennett et al. 2012; Du Laing et al. 2009)
and thereby enhance subsequent microbial methylation of
As. Cullen et al. (1994) identified the extracellular As
metabolites in the growth medium of Apiotrichum
humicola and Scopulariopsis brevicaulis and the methyla-
tion was as follows: inorganic As— monomethylarsonic
acid — dimethylarsinic acid— trimethylarsine oxide.
Monomethylarsonic acid was shown to be an intermediate,
which is hardly excreted due to its low permeability and
rapid intracellular metabolism. Dimethylarsinic acid was
10 times more permeable to the membranes than
monomethylarsonic acid and thus explains the generally
much lower concentrations of monomethylarsonic acid in
most natural environments compared to dimethylarsinic
acid (Blodau et al. 2008; Fauser et al. 2013; Hasegawa
et al. 2009; Huang and Matzner 2007). Intracellular meth-
ylation of As(V) in Trichoderma asperellum, Penicillium
Janthinellum and Fusarium oxysporum revealed the for-
mation As(III), monomethylarsonic acid and
dimethylarsinic acid in cells and highlights the fact that
intracellular As(V) reduction progresses more easily than
methylation (Su et al., 2012). Instead of aqueous methyl
As, numerous studies showed the formation of gaseous
methyl arsines such as Methanobacterium bryantii
(McBride 1971), Methanobacterium formicium, Clostrid-
ium collagenovorans, Desulfovibrio gigas and
Desulfovibrio vulgaris (Michalke et al. 2000). Trivalent
methyl As (monomethylarsonous acid and
dimethylarsinous acid) were proposed to be the intermedi-
ates of As methylation according to Challenger’s pathway,
and have been detected in both environmental samples
(Huang et al. 2011b; McKnight-Whitford et al. 2010)



Water Air Soil Pollut (2014) 225:1848

Page 7 of 25, 1848

and human cells (Hippler et al. 2011). However, both
monomethylarsonous acid and dimethylarsinous acid have
not yet been found during microbial As methylation. As
indicated, the ability to methylate As(III), As(V) or methyl
As and the chemical forms of methyl As produced seems
to be microorganism dependent (Table 1). To date, As(III)
S-adenosyl-methionine methyltransferase has been the
most frequently investigated methylation pathway for
As(IT) (Qin et al. 2006; Yuan et al. 2008), showing methyl
arsines as the products. Nevertheless, the summary in
Table 1 highlights that most microorganisms are able to
methylate As using As(V) as starting compounds and
dissolved methyl As may be the product instead of methyl
arsines. This suggests that either microorganisms have the
ability to reduce As(II) or use other methylation pathways
for methylation directly using As(V). Although several
methylation pathways have been proposed (Mestrot et al.
2013; Wu 2005; Wuerfel et al. 2012), the current state of
knowledge is still not able to explain the occurrence of
methyl As of different chemical forms in nature and
their linkage to the different enzymatic systems
involved in microbial methylation; e.g. As(V) re-
ductase, monomethylarsonic acid reductase, As(III)
methyltransferase and monomethylarsonous acid
methyltransferase (Wu 2005).

3.4 Demethylation

Demethylation may occur under oxic and anoxic con-
ditions but is usually faster under oxic conditions
(Huang et al. 2007). Elimination of the organic moieties
not only increases the general toxicity of As but also
decreases its mobility. Thus, demethylation is apparent-
ly not suitable for the purpose of remediation and there-
fore draws relatively few research interests. Although
microbial As demethylation has been broadly evidenced
in the natural environment (Huang et al. 2007;
Khokiattiwong et al. 2001; Millward et al. 1996;
Sierra-Alvarez et al. 2006), characterisation of microbial
demethylation and investigation of microbial communi-
ty involved is scarce. Yoshinaga et al. (2011) identified
Burkholderia and Streptomyces species in contaminated
soils as being responsible for monomethylarsonic acid
reduction and monomethylarsonous acid demethylation.
Only a mixed culture could perform the complete pro-
cess of demethylation, demonstrating that
monomethylarsonic acid demethylation to As(IIl) is a
two-step process. Mycobacterium neoaurum was found
to demethylate both monomethylarsonic acid and

monomethylarsonous acid to mixtures of As(V) and
As(IIT) (Lehr et al. 2003). Arsenic demethylation usually
refers to the degradation of aqueous methylated As. In
the atmosphere, the gaseous methylated arsines undergo
rapid photooxidative degradation (Mestrot et al. 2011).
Whether the microorganisms present in the atmosphere
are able to carry out As demethylation is still an open
question.

4 Influence of Other Microbial Redox Reactions
on Arsenic Geochemistry

Almost all of the natural redox reactions may influence
As environmental behaviour. They may shift the redox
equilibrium between As(IIl) and As(V), and may also
dissolve and precipitate minerals, substantially changing
the mobility of As. The most well-known processes
among all are microbial Fe and S reduction and oxida-
tion. Figure 2 shows a schematic presentation of the
interaction among As, Fe and S oxidation and reduction.
The redox transformation of Fe, S and As is predomi-
nately driven by microorganisms, but abiotic As trans-
formation coupled with Fe and S redox transformation
may also occur. Formation of Fe(Il) and Fe(IIl)
(hydr)oxides, sulphide and As(V) minerals during bio-
geochemical cycling will be the major sink for the
solution As. Discussion about the known interplay be-
tween other microbial redox reactions and As behaviour
are given in the following sections and detailed infor-
mation is summarised in Table 2.

4.1 Nitrate Reduction

Nitrate reduction may not only inhibit As(V) reduction
(see Section 3.2) (Dowdle et al. 1996) but can also
influence As cycling under anoxic conditions. For exam-
ple, nitrate-respiring sediments could reduce As(V) to
As(III) once all of the nitrate has been removed (Gibney
and Nusslein 2007). In urban lakes, microbial oxidation
of Fe(Il) and As(IIl) facilitated by nitrate may be a
significant process leading to the formation of particulate
ferric-oxide and As(V); an important consequence of
enriched nitrate is therefore the presence of As(V) asso-
ciated with hydrous ferric oxide colloids (Senn and
Hemond 2002). Injecting nitrate may support the anoxic
oxidation of Fe(Il) and As(IIl) in the subsurface as a
means to immobilise As in the form of As(V) adsorbed
onto biogenic Fe(Ill) (hydr)oxides (Sun et al. 2009).
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S(VI)

Fig.2 Overview of the interaction between microbial (solid lines)
and microorganism mediated processes (dash lines) of Fe, S and
As redox transformation influencing As compounds. (/) microbial
As(V) reduction; (2) microbial As(IIl) oxidation; (3) microbial
sulphide oxidation; (4) microbial sulphidisation; (5) microbial
Fe(IIl) reduction; (6) microbial Fe(Il) oxidation; (7) sulphide

4.2 Iron Reduction

There are a number of microorganisms known to be
responsible for reducing Fe in the reducing environ-
ment. The most famous are Geobacter spp. and
Shewanella spp. (Lovley et al. 2004). Generally, reduc-
tive As mobilisation is attributed to microbial Fe reduc-
tive dissolution, which is concluded mostly based on
field observations (Corsini et al. 2010; Cummings et al.
1999; Huang and Matzner 2006; Islam et al. 2004;
Tadanier et al. 2005). Corsini et al. (2010) demonstrated
that microbial Fe reduction was the major process that
caused As mobilisation in flooded soils when microbial
As(V) respiratory activity was lacking. Microbially me-
diated reduction of Fe(III) (hydr)oxides was shown to be
capable of promoting As mobilisation from a crystalline
ferric arsenate as well as from sorption sites (Cummings
et al. 1999). Tadanier et al. (2005) suggested
microbially-mediated deflocculation of Fe(III)
(hydr)oxide nanoparticles from an initially aggregated
particulate configuration to smaller filterable colloids as
the dominant mechanism of As mobilisation. Neverthe-
less, As mobilisation via reductive dissolution of Fe
(hydr)oxides, especially amorphous phases with very
high As adsorption capacity, is doubtful when looking

(o]

*

7 .."-* AS

induced As(V) reduction; (&) abiotic As(III) oxidation; (9) sul-
phide-induced Fe(IIl) reduction; (/0) ferric ion-induced sulphide
oxidation; (//) ferric ion-induced As(IIl) oxidation; (/2) arsenic
sulphide precipitation; (/3) formation of aqueous thioarsenic com-
plexes; (/4) iron sulphide precipitation; (/5) ferrous arsenate pre-
cipitation; (/6) formation of secondary Fe(II) minerals

into the results from a series of lab model experiments:
Simulating microbial Fe reduction with ascorbic acid
indicated that adsorbed As(V) was not released until the
surface area of ferrihydrite and goethite became too
small (Pedersen et al. 2006). It is thus plausible that
increased As mobilisation at the water-ferrihydrite inter-
face via Fe(III) reductive dissolution was indicated to be
only relevant at high As(V) to ferrihydrite ratios (Jiang
et al. 2013). On the other hand, several model experi-
ments have shown that the formation of secondary
Fe(Il) (hydr)oxides, e.g. magnetite (Fe;0,), vivianite
[Fe3(PO4),-8H,0] siderite (FeCOs3) and bobierrite
[Mg3(POy),:8H,0] during microbial reduction may trap
released As again, depending on the composition of the
working solution (Burnol et al. 2007; Coker et al. 2006;
Herbel and Fendorf 2006; Islam et al. 2005). Addition-
ally, As(V) bound more strongly after Fe*" catalysed
ferrihydrite and lepidocrocite [y-FeO(OH)] transforma-
tion into more crystalline Fe(IIl) oxide phases or mag-
netite, leading to the incorporation of As into the struc-
ture of the crystalline product (Pedersen et al. 2006).
Similar to ferrihydrite, no apparent As mobilisation was
observed during reduction of schwermannnite due to the
formation of biogenic minerals (Cutting et al. 2012).
Recently, incubations with different Shewanella strains
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8 & = = suggested that microbial Fe(IIl) reduction is able to
a g = 2g
=3 . .y . . .
& = a8 immobilise As via the formation of Fe3(AsO,), precip-
= = < — . . .
s S 8 & itation and that the parallel As(V) reduction to As(III
5 B p
72} — 153 . . . . .
g 3 3 § g prevents precipitation with Fe(Il) (Jiang et al. 2013). In
B g 3 £ E summary, the model experiments showed highly con-
Q . . . .
~ e = SRS troversial results of the influence of microbial Fe reduc-
g - tion on As mobility, although most field studies high-
o _§ =3 light As mobilisation as a consequence of microbial
3 é 2 5; g reductive dissolution of Fe(Ill) (hydr)oxides. Recently,
E 2 o s 5 E astudy of As behaviour in wetland soils allowed the first
g S = . o
F52E E Eeo explanation of this discrepancy. It showed that the pres-
25835 s E8 p pancy p
%fg- § = ‘g “_3 % ence of organic matter reduced or inhibited the forma-
8 O‘Z% % 3 § § 5 tion of secondary Fe(I) minerals during reductive dis-
SZ2g53 E g g 5 solution of Fe(III) (hydr)oxide and that As was not taken
E2g5 e SR up and was thereby strongly solubilised (Davranche
cgEET Q25T :
. % S35, =5 E8 2 et al. 2013). It appears that the complexity of the natural
Z;g g %D:‘e: E o % ; % E{i system provides plenty of possibilities to influence the
2 g5 s 27 transformation of Fe (hydr)oxides with a consequent
. effect on As mobility, which should be more compre-
N % o Y hensively investigated in future model experiments.
. Eﬁl g £a Abiotic reduction of As(V) by Fe(Il) produced by
Z s = . . R . .
= ve 2 52 microbial Fe(Ill) reduction is unlikely. In an abiotic
eSS S 2 E control experiment, Zobrist et al. (2000) checked for
B %‘J: g T £ possible As(V) reduction in the presence of Fe(Il) in
g 2 fj; E ef ferrihydrite suspensions, but detected no As(Ill) in so-
2 28R Sewn S . . .
= S g9 BqYE lution or sorbed to the solid phase. Similarly, Amstaetter
. =\ = .
3 g g OS_ §;§ f‘:% et al. (2010) observed no reduction of As(V) under
% £ fw ‘545 g2eg 22 strictly anoxic conditions by “Fe(Il)-activated” goethite,
= g 2USfEJEs8 . . . .. _
£ = g SR S, i.e. goethite w1th adsorbed Fe'(H)'. Surprisingly, howev
E Z 5 Lo g a 3 m = er, the authors did observe oxidation of As(III) to As(V)
by Fe(Il)-activated goethite under anoxic conditions,
= suggesting that Fe(I) on the goethite surface formed a
- - z highly reactive, As(Ill)-oxidising surface site of un-
£ £ 3 known nature
g k| 8 :
g E iz
?% € § % § § 4.3 Manganese Oxidation and Reduction
= 5 2 5 22§
'% E é E § § k| The information concerning the interaction between Mn
S g 2 2 285 oxidation and reduction and As is less than Fe redox
=
<5} = <5} = . .
transformation, probably because Mn oxides are usually
a minor component compared to Fe (hydr)oxides in
g . soils and sediments. Microbial Mn oxidation and reduc-
% 2 3 tion may act on As mobilisation similar to Fe(III) reduc-
S = . . . .
=) § % § tion since Mn(IV) oxides are also effective sorbents for
g E 3 g S As(V) (Ajith etal. 2013; Smedley and Kinniburgh 2002;
é é E ? E §§ Ying et al. 2012). The major difference with Fe
| B T X R Ié (hydr)oxides is that Mn-oxides are quite reactive, with
=} = 5 . . . .
B % é % g g respect to As(III) oxidation to As(V), which substantial-
el s <= B =83 ly changes the As mobility. To date, As(IIT) oxidation by
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biogenic Mn oxides has been evidenced in bacteria and
fungi (Liao et al. 2013; Ozaki et al. 2013; Tani et al.
2004; Ying et al. 2011). An interesting study based on
Donnan cell experiments highlighted the potential cy-
cling between microbial As(V) reduction and abiotic
As(III) oxidation by bernessite (MnO,) (Ying et al.
2011). Such As redox cycling ceased until the passiv-
ation of bernessite surface by precipitating rhodochro-
site (MnCOs3). Whether the As cycling between micro-
bial As(V) reduction and Mn oxide oxidation play a
significant role in the natural environment is question-
able. The simultaneous presence of Mn oxides and
microbial As(V) reduction in the natural environment
seems unlikely. As shown in redox priority sequence,
the priority of As(V) reduction is generally lower than
the reduction of Mn oxides, i.e. As(V) reduction may
begin in the redox condition after Mn oxides have been
completely reduced.

4.4 Sulphidisation

Although microbial reduction of S compounds into
sulphide is frequently regarded as a process to trap
solution As (O’Day et al. 2004), As,S; precipitation is
sensitive to environmental conditions. Usually, As,S3
precipitation favours acidic over basic conditions and
microorganism-mediated precipitation of As,S; may
occur both extracellularly and intracellularly (Newman
et al. 1997a). Microorganism-mediated As,S; precipita-
tion is a function of the ability of microorganisms to
reduce As and S compounds to appropriate concentra-
tions of As(IlI) and sulphide. The precipitation of As,S;
occurs in anoxic waters essentially when dissolved sul-
phide and As(III) production exceeds their solubility
products. On the other hand, investigation of precipita-
tion of As,S3 by D. auripigmentum and
Desulfotomaculum propionicus demonstrated that
D. propionicus reduce S(VI) too rapidly, leading to
formation of HyAsS¢" ° rather than As,S; precipitates
(Newman et al. 1997a). When Fe concentrations are
much higher than sulphide concentrations, As seques-
tration becomes controlled by Fe because aqueous sul-
phide is rapidly depleted during the formation of iron
sulphide minerals (Kocar et al. 2010; Saalfield and
Bostick 2009). The findings related to the influence of
Fe-S redox interaction during microbial sulphidisation
on As mobility are controversial and at the same time
show the high complexity of the natural system. Kocar
et al. (2010) and Saalfield and Bostick (2009) both

concluded As sequestration by the residual ferrihydrite
and secondary Fe(Il) minerals (magnetite) during
sulphidisation. On the other hand, Burton et al. (2011)
reported that sulphide-driven reductive dissolution of
ferrihydrite and its replacement by mackinawite (FeS)
resulted in the substantial mobilisation of As into the
pore water. Formation of poorly sorbing aqueous
thioarsenic species during microbial sulphidisation
may cause the additional enhancement of As
mobilisation (Burton et al. 2013). Accordingly, the
change of not only the mineral composition but also
As speciation needs to be carefully considered when
evaluating and predicting subsurface As mobility in
the presence of sulphidisation.

4.5 Iron Oxidation

Due to the high adsorption capacity to As, the formation
of Fe(Ill) (hydr)oxides is undoubtedly capable of trap-
ping As from the solution phases. Microorganism-
mediated Fe(IIT) (hydr)oxide is known to be responsible
for As immobilisation in acid mine drainage (see also
Section 4.6) (Duquesne et al. 2003; Ma and Lin 2012)
and the presence of free Fe** ion enable to oxidise
As(Il) to As(V) abiotically (Huang and Kretzschmar
2010). Furthermore, microbial Fe oxidation has been
broadly applied for As remediation in anoxic environ-
ments (Hohmann et al. 2010; Kleinert et al. 2011; Liu
et al. 2013a). Different from the abiotic Fe(III)
(hydr)oxides, the presence of cell organic matter in
biogenic Fe(Ill) (hydr)oxides seems to decrease As ad-
sorption capacity, probably due to competitive adsorp-
tion (Hohmann et al. 2011; Kleinert et al. 2011).

4.6 Bioleaching

Arsenic bioleaching is usually referred to as
biooxidation of As containing sulphide minerals, e.g.
arsenopyrite (FeAsS), enargite (CuzAsS,) and realgar
(As4S4) by acidophilic Fe oxidation microorganisms
such as A. ferrooxidans, Leptospirillum ferrooxidans,
Thiobacillus ferrooxidans and Thiobacillus caldus
(Acevedo et al. 1998; Corkhill et al. 2008; Dopson and
Lindstrom 1999; Marquez et al. 2012). Usually,
bioleaching is more efficient than abiotic oxidation
(Corkhill et al. 2008). Bioleaching of As-containing
sulphide minerals usually occurs via the microbial trans-
formation of ferrous to ferric ions with the subsequent
chemical oxidation of sulphides by Fe*>* (Marquez et al.
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2012). It has been indicated that a close contact between
microorganisms and the mineral is needed for leaching
(Arredondo et al. 1994). Thus, the Fe** produced may
also become a constitute of extracellular polymeric sub-
stances supporting microbial attachment to mineral sur-
face and the biooxidation process. The presence of
microorganism such as 7. caldus may support
bioleaching by metabolise S built upon the surface of
the mineral, allowing microbial and chemical access to
the mineral (Dopson and Lindstrom 1999). Another
potential pathway is the microbial oxidation of sul-
phides parallel releasing As(IIT) in solution (Chen et al.
2011). Some microorganisms, like A. ferrooxidans, are
able to oxidise As(III) to As(V) and thereby decrease As
mobility (Zhang et al. 2007). Additionally, the oxidation
of As(Il) to As(V) could be catalysed by microbial
oxidising Fe*" presented to conserve energy (Chen
etal. 2011). Bioleaching may elevate As concentrations
in solution up to several grams per litre (Acevedo et al.
1998). On the other hand, the release of As may be
suppressed by formation of the secondary mineral pre-
cipitates such as jarosite [KFe3;(OH)g(SO4),], magnetite
(Fe30,4), ferric arsenate [Fe,(AsQOy4)3], scorodite
(FeAsO4-2H,0), schwertmannite [FegOg(OH)g(SO4)-
nH,0], ferric hydroxide [Fe(OH);] and ferric
phosphate [Fe;(PO4);] (Chen et al. 2011; Corkhill
et al. 2008; Duquesne et al. 2003). Arsenolite (As,03)
may also be created during bioleaching of arsenopyrite.
Although it is highly water soluble, this presents as fine
particles embedded in the jarosite matrix, which
prevents its dissolution (Marquez et al. 2012).
Therefore, the mobility of As after bioleaching seems
to be determined by the environmental matrix. For
example, bioleaching of realgar with A. ferrooxidans
by adding Fe*" led to the formation of jarosite,
whereas adding sulphur and Fe?" suppressed the
formation of jarosite (Chen et al. 2011). The presence
of highly concentrated As(IIl) and As(V) inhibited
bioleaching due to the toxic effect (Breed et al. 1996).

5 Influence of Microbial Redox Transformation
on Arsenic Mobility in Natural Soils and Sediments

Few attempts were made to outline the influence of
microbial activities on As mobilisation from soils and
sediments by inoculating pure cultures. For example,
inoculating a native As(V)-reducing strain MIT-13 in
the sediment of the Aberjona watershed demonstrated
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the potential of microbial As(V) reduction to release As
associated with sediment solids (Ahmann et al. 1997).
Incubations of lake sediments with Shewanella alga
BrY demonstrated Fe(Ill) reduction releasing As(V)
without reducing it (Cummings et al., 1999). The latest
studies with Fe(Ill) reducing Shewanella strains of dif-
ferent As(V) reducing activities showed very different
As mobilisation behaviour from ferrihydrite and natural
soils. In the incubations with ferrihydrite, As
mobilisation was only observed in the incubation with
the strain capable of As(V) reduction, whereas As re-
lease from the natural soils was detected in all incuba-
tions. Such discrepancy suggests that the soil matrix
substantially changed the geochemical behaviour of As
and Fe species and, furthermore, to implicate the knowl-
edge obtained from the model experiments to the natural
system, it is indispensable to include the effects caused
by the matrix from the natural samples, which much
more focus should be placed on in the future research.

6 Arsenic Mobilisation and Immobilisation via
Non-redox Reaction-Induced Mineral Dissolution
and Precipitation

6.1 Mineral Dissolution

Microorganisms have developed several different strat-
egies to dissolve insoluble minerals to obtain the nutri-
ents encompassed. The most well-known case is prob-
ably the production of siderophores, which are small,
high-affinity Fe-chelating compounds secreted by mi-
croorganisms (Gadd 2004). In addition to Fe,
siderophores can also bind to the other metals such as
Al, Mn, Mg, Cr, etc. Different from reductive dissolu-
tion of Fe(Ill) (hydr)oxides, the complexation of Fe
retards the formation of secondary minerals and As
solubilisation is thus plausible. Pseudomonads strains
isolated from mining sites produced siderophores,
which could promote mineral dissolution and
mobilisation of the more toxic As(Il) species in the
environment (Matlakowska et al. 2008). Nair et al.
(2007) indicated that the siderophore secreted by Pseu-
domonas azotoformans is capable of complexation with
As(IIT) and As(V) and thereby extracted not only the
bioavailable fraction but also bound As in soils. Mineral
dissolution may also occur via the by-product of micro-
bial metabolites. Phosphate-limited cells of
Burkholderia fungorum mobilise ancillary As from
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apatite as a by-product of mineral weathering for nutri-
ent acquisition (Mailloux et al. 2009). Microbial oxida-
tive degradation of glucose to gluconic acid by
B. fungorum in intimate contact with apatite
(Cas(PO4);(F,CI,OH)) is a likely cause of As release
from the mineral structure into the water. In the absence
of secondary precipitates, the mobility of As in this case
will simply be determined by the amount and adsorption
capacity of the compounds. Microorganisms may also
secrete organic compounds for other purposes; e.g.
Shewanella spp. are able to produce Fe(IlI) solubilising
ligands to initialise respiration of insoluble Fe(III)
(hydr)oxides (Taillefert et al., 2007). There may be more
mechanisms of As mobilisation via microorganism-
induced mineral dissolution, but these have not yet been
identified. For instance, Frey et al.(2010) highlighted the
potential of HCN-producing microorganisms to dis-
solve minerals, which might be a probable mechanism
to release mineral-associated As. Therefore, micro-
organisms seem to be more involved, directly or
indirectly, in mineral dissolution-induced As re-
lease than we currently know, which might be a
potential focus of future research.

6.2 Biomineralisation

Aside from the influence of biogenic Fe, Mn and sul-
phide minerals (see also Fe reduction and oxidation and
sulphidisation), a range of biogenic minerals may
immobilise As in solution. For example, calcite precip-
itated by the As(IIl) tolerant soil bacterium
Sporosarcina ginsengisoli CRS was able to shift soil
As from the exchangeable fraction to the carbonated
fraction (Achal et al. 2012). Another biomineralisation
process to immobilise As is the formation of As precip-
itates, e.g. scorodite and As sulphide (see bioleaching
and sulphidisation). There are more than 300 As min-
erals known to occur in nature (Drahota and Filippi
2009). For example, in an As-contaminated perched
aquifer affected by mining activity, free Ca®" availability
was found to control As mobility in the aquifer through
the diagenetic precipitation of calcium arsenates
[CasH,(AsO4)4-cH,0] preventing further mobilisation
of As in Ca-rich environments (Martinez-Villegas et al.
2013). For decades, it has been a common practice to
stabilise As wastes as metal arsenate compounds (i.e.
ferric arsenate, calcium arsenate and magnesium arse-
nate) (Bothe and Brown 1999; McNeill and Edwards
1997), and to dispose of them in slags, tailings and

residue dumps (Robins 1981). The significance, mech-
anism and environmental implication of many microbial
minerals have been reviewed (Benzerara et al. 2011). In
comparison, the occurrence of most microbial As min-
erals is still not clear.

7 Biofilm

Most microorganisms can form biofilms, and over 99 %
of all microorganisms on earth live in these biological
structures (Costerton et al. 1987). Biofilms allow the
coexistence of microniches of different physiological
requirements, enabling the simultaneous, but spatially
separated occurrence of opposing redox processes in the
same biofilm environment (Labrenz et al. 2000; van
Hullebusch et al. 2003). This important role of biofilm
in As biogeochemistry was evidenced by the potential
enrichment of As in biofilm. The concentrations of As in
rock biofilm reached up to 60 mg kg ' (dry weight)
(Drewniak et al. 2008). A recent research based on X-
ray absorption spectroscopic analysis focussed on As
biotransformation in the mix cultured biofilm spiked
with 50-1,000 ppm As(Ill) and As(V) (Yang et al.
2011). Interestingly, there might be simultaneous As
oxidation and reduction in biofilms, although the extent
of As(IlT) oxidation was apparently higher than that of
As(V) reduction. Aside from As redox transformation,
As methylation was also indicated, as shown by the
appearance of monomethylarsonous acid and
trimethylarsine oxide after 20 and 90 days of incubation.
The addition of Se seemed to stimulate As redox trans-
formation and methylation in biofilms. The oxidation of
As(1II) and the formation of trimethylarsine oxide was
especially suggested as a useful application of the afore-
mentioned biofilm for As(II) removal and detoxifica-
tion in As(IIT) contaminated aquatic environments. It
has also been demonstrated that As treatment can lead
to changes in microbial biofilm structure. Another study
concerning rock biofilm from an ancient gold and As
mine highlighted the simultaneous presence of As-
oxidising and As-reducing bacteria and evidenced the
ability of siderophores in biofilm porewater to mobilise
As from the rock (arsenopyrite) (Tomczyk-Zak et al.
2013). Still, the knowledge concerning biofilm As is
scant. Further research on As-biofilm interactions and
biofilm As transformations is required in the future with
the objective of defining the role of biofilms in As
biogeochemistry.
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8 Conclusion and Outlook

The past research has clearly indicated the significant
influence of microorganisms on the environmental fate
and transport of As, regardless of whether the contribu-
tion is direct or indirect. Figure 1 summarises the poten-
tial pathways of the direct interactions between micro-
bial cells and As, including physical sequestration and
chemical transformation. Accordingly, taking the soil as
an example, in which the microbial density may reach
up to 10'° cells g ! (Torsvik et al. 2002), the presence of
microbial cells in the environmental media may already
change As adsorption affinity to mineral surfaces due to
the cell surface functional group competition, intracel-
lular sequestration and cell surface biosorption. Micro-
bial transformation of As, Fe, S and Mn simultaneously
affects the mobility of As in nature, while the mobility
of As depends largely on the chemical forms of As Fe, S
and Mn. Therefore, biotransformation could be consid-
ered the major driving force of the As biogeochemical
cycle. Table 3 outlines the influence of different micro-
bial processes on As mobility at the water-mineral in-
terface. The influence of microbial processes acting
directly on As can be clearly concluded. For example,
As reduction and methylation increase the mobility of
As, whereas oxidation and demethylation decrease As

mobility. In comparison, for those processes indirectly
associated with As such as Fe and S redox transforma-
tion, their influence on As environmental mobility is
usually ambiguous. As indicated in the schematic pre-
sentation of the interaction among Fe, S and As redox
cycling (Fig. 2), which was proposed based on the
literature information, the interplay between Fe and S
redox transformation and As biogeochemical behaviour
is complicated. Iron and S redox transformation may
cause the precipitation of secondary minerals [e.g. Fe(IT)
and Fe(III) (hydr)oxides, FeAsQy, FeS, As,S3] for trap-
ping As in solution. On the other hand, they may mobi-
lise As via the reductive dissolution of Fe(Ill) hydrox-
ides, oxidation of As-containing sulphides and the for-
mation of dissolved thioarsenic complexes. Additional-
ly, their redox products (S*~ and free Fe*") are able to
induce abiotic As redox transformation. Apparently, the
mobility of As is governed by whether the formation of
secondary minerals takes place or not. In addition, the
interplay between Fe and S redox transformation shifts
the extent of their influence on As mobilisation. For
example, the presence of much larger amounts of Fe(III)
hydroxides in soils and sediments inhibit the interaction
between S redox cycling with As (Kocar et al. 2010).
The soil matrix has been shown to be capable of
completely changing the mobility of As associated with

Table 3 Summary of microbial

Comments

processes influencing arsenic Processes
mobility in the surface
environment Mobilisation

Arsenic reduction
Arsenic methylation
Competitive adsorption
Immobilisation
Arsenic oxidation
Demethylation
Biomineralisation
Biosorption
Bioaccumulation

Iron oxidation

Mobilisation and immobilisation

Iron reduction

Sulphidisation

Bioleaching

As(III) more mobile than As(V)
(Gaseous) Methyl As mobile than inorganic As

As(IIT) more mobile than As(V)

(Gaseous) Methyl As more mobile than inorganic As
Adsorption and formation of As containing minerals
Extracellular sequestration

Intracellular sequestration

Formation of Fe(IlI) (hydr)oxide for As sorption

Mobilisation: reductive dissolution of Fe (hydr)oxide
Immobilisation: secondary mineral sequestration
Mobilisation: formation of aqueous As-S complexes
Immobilisation: formation of As sulphide precipitates
Mobilisation: oxidative dissolution

Immobilisation: secondary mineral sequestration
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Table 4 Microorganism based arsenic bioremediation proposed in the literature to date

Micorbial process/comments References

Biosorption
(Yang et al. 2012)

« The maximum biosorption capacity of living cells of Bacillus cereus for As(IIl) was found to be 32.42 mg g~ (Giri et al. 2013)
at pH 7.5, at optimum conditions of contact time of 30 min, biomass dosage of 6 g L', and temperature of
30 °C
* Bacillus cereus Strain W2 retained As(II) and As(V) up to 1.87 mg As g~ ' of dry cell weight and dry cell ~ (Miyatake and Hayashi
removal capacity up to 0.18 mg As g 2011)
+ The biosorption capacity of the Rhodococcus sp. WB-12 for As(IIl) was 77.3 mg g ' at pH 7.0 using | g (Prasad et al. 2011)
L biomass with the contact time of 30 min at 30 °C
Bioaccumulation

* Fe(Ill) treated Baccilus subtulis has 11 times higher As(V) sorption capacity than that of the native bacteria

* Engineering of phytochelatin producing, As transporter GIpF co-expressing and an As efflux deletion (Singh et al. 2010)
Escherichia coli showed a 80-fold more As accumulation than a control strain, achieving accumulation level of
16.8 umol g ' (dry cell weight)

* Saccharomyces cerevisiae was engineered for 3—4-fold greater As(Ill) uptake and accumulation by over-
expression of transporters genes FPS1 and HXT7 responsible for the influx of the contaminant coupled with
and without high-level production of cytosolic As sequestors (phytochelatins or bacterial ArsRp)

* Engineered Escherichia coli expressing ArsR accumulated 50-60 times higher As(IIl) and As(V) than control (Kostal et al. 2004)

Bioreduction

(Shah et al. 2010)

* The co-presence of anthraquinone-2,6-disulfonate with As(V) respiratory reducing bacteria (Bacillus (Yamamura et al. 2008)
selenatarsenatis SF-1) improved the removal efficiency and can be an effective strategy for remediation of
As-contaminated soils

Biomethylation

* A synergistic degradation system combining two bacteria (Bacillus sp. PY1 and Sphingomonas sp. PY2)and a (Liu et al. 2013b)
fungus (Fusarium sp. PY3), isolated from contaminated soils is the most effective approach to degrade pyrene
and remove As in contaminated soil

* Engineering the soil bacterium Pseudomonas putida expressing the As(III) S-adenosylmethionine
methyltransferase gene has the potential for bioremediation of environmental As

* Soil microorganism e.g. Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal (Srivastava et al. 2011)
strains could be used for soil As bioremediation via biovolatilisation

Biomineralisation

(Chen et al. 2013)

* The nitrate- and sulphate-plus-lactate-amended microcosms with sediment from an aquifer with naturally (Omoregie et al. 2013)
elevated As levels decreased effective soluble As levels from 3.9 to 0.01 and 0.41 uM via sorption onto freshly
formed hydrous ferric oxide and iron sulphide

* The biogenic Mn oxides generated by Marinobacter sp. Mnl7-9 oxidised the highly toxic As(III) to As(V)
and decreased the concentration of As(IIl) from 55.02 to 5.55 uM

* Arsenic immobilisation by biogenic Fe-mineral formed by Acidovorax sp. BoFeN1, an anaerobic
nitrate-reducing Fe(Il)-oxidising B-proteobacteria

*» Microbial calcite precipitated by an As(III) tolerant bacterium Sporosarcina ginsengisoli CRS to retain As

(Liao et al. 2013)
(Hitchcock et al. 2012)

(Achal et al. 2012)

* Bioremediation strategy based on injecting nitrate to support the anoxic oxidation of Fe(Il) and As(II) in the (Sun et al. 2009)
subsurface as a means to immobilise As in the form of As(V) adsorbed onto biogenic Fe(III) (hydr)oxides

Fe (hydr)oxide during microbial Fe(Ill) reduction (Jiang
et al. 2013). Thus, many natural substances are expected to
exhibit substantial effects on the microbial processes and
subsequently change the environmental behaviour of As,
either directly or indirectly. One of the best known exam-
ples is natural organic matter. Although its presence may
partly explain the controversial findings of Fe(III)
reduction-induced As releases between lab model studies
and field work in the past (Davranche et al. 2013), natural
organic matter may also interact with As by (1) serving as

an electron donor or carbon source to fuel Fe(Ill) and
As(Ill) reduction (Lovley et al. 1996) and methylation
(Zheng et al. 2013), (2) as an adsorbant to complete As
adsorption to the mineral surface (Weng et al. 2009), (3) as
a sorbent for As (Thanabalasingam and Pickering 1986)
and (4) as an abiotic reductant for As(V) (Palmer and von
Wandruszka 2010). This highlights the fact that there are
still many unknown factors influencing As fate and mo-
bility in the environment and, at the same time, that the
research concerning microbial As is still in its infancy;
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therefore, a thorough understanding the true As behaviour
in the surface and subsurface environments under the
influence of microbial activities is still very challenging.
Researching microorganism—As interactions also
provides the opportunity of studying As remediation
taking advantage of microbial activities (Wang and
Zhao 2009). More and more studies have shown the
potential to utilise (genetic engineered) microorganisms
to remediate As-contaminated compartments e.g. via
bioreduction (Yamamura et al. 2008), biomethylation
(Chen et al. 2013; Liu et al. 2013b; Srivastava et al.
2011), biomineralisation (Achal et al. 2012; Hitchcock
et al. 2012; Liao et al. 2013; Omoregie et al. 2013; Sun
et al. 2009), biosorption (Giri et al. 2013; Miyatake and
Hayashi 2011; Prasad et al. 2011; Yang et al. 2012) or
bioaccumulation (Kostal et al. 2004; Shah et al. 2010;
Singh et al. 2010). Information from some recent pub-
lications about As remediation utilising microorganisms
is outlined in Table 4. Although microbial transforma-
tion may help to release solid-associated As into the
gaseous or aqueous phases, no suggestion was given
for the follow-up removal/treatment of mobilised As. In
comparison, research into As remediation based on
intra- and extra-cellular sequestration seems to be
deeper. The cell retention capacity of As was largely
magnified by manipulating phytochelatin producing, As
transporter and As efflux genes (Singh et al. 2010) and
overexpressing As-resistance regulatory proteins
(Kostal et al. 2004). Although it is very difficult to have
an objective comparison of the retention capacity among
different methods due to inconsistencies of the experi-
mental conditions, the proposed microorganism-based
methods for As removal based on intra- and extra-
cellular sequestration still seem to be unsatisfactory
compared to the conventional abiotic methods. Current-
ly, the retention capacity of Rhodococcus sp. WB-12
cells is the highest of all microorganisms in the
literature, with a value of 77.3 mg g ' for As(II)
at pH 7.0 (Prasad et al. 2011) (Table 4). However,
this is far from the adsorption capacity of minerals
(e.g. 300-375 mg g ' to hydrous ferric oxide)
(Raven et al. 1998) and 1,125 mg g ' to amor-
phous AI(OH); (Anderson et al., 1976). The
microorganism-based treatment is usually advanta-
geous over minerals due to lower costs of treat-
ment (Wang and Zhao 2009). Thus, more exten-
sive and deeper research into As—microorganism—
mineral interactions may help to identify the ap-
propriate conditions for improving the efficiency
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of microbial As remediation, making it comparable
with abiotic methods.
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Appendix 1

Table 5 Minerals and their chemical formulas mentioned in this
review

Mineral Chemical formula

Apatite Cas(PO4)3(F,CLLOH)
Arsenolite As,03

Arsenopyrote FeAsS

Pb-As Jarosite PbFe3(S04,As04),(OH)g
Birnessite MnO,

Bobierrite Mg;(PO4),-8H,0
Boehmite v-AIOOH

Calcite CaCO;

Calcium arsenates  (CasH,(AsO4)4.cH,O
Enargite CuzAsSy

Ferrihydrite FesHOg-4H,0

Goethite «-FeO(OH)

Green rust [Fe 1y Fe™, (OH),""[(x/n) A" (m/n) HOT*
Hematite «-Fe, 05

Iron sulphide FeS

Jarosite KFe3(OH)s(SO4),
Mackinawite FeS

Magnetite Fe;04

Orpiment As,S3

Realgar AsySy

Rhodochrosite MnCO;

Schwertmannite (FegOg(OH)6(SO4)-nH,0)
Scorodite FeAsO42H,0O
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