Skip to main content
Log in

RDX Degradation Potential in Soils Previously Unexposed to RDX and the Identification of RDX-Degrading Species in One Agricultural Soil Using Stable Isotope Probing

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the susceptibility of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to biodegradation in a range of soils and to identify RDX-degrading organisms using stable isotope probing (SIP). RDX degradation was examined in ten soils, primarily from agricultural areas. RDX biodegradation was observed in six samples and only when the microcosms were not aerated. For one soil, 15N- and 13C-based DNA SIP was used to identify the microorganisms responsible for RDX degradation. Two RDX concentrations were examined (10 and 20 mg/L), however, only the higher concentration resulted in a significant SIP signal. In these ultracentrifugation fractions, one terminal restriction fragment length polymorphism (TRFLP) fragment (260 bp) showed a reliable trend of label uptake. This fragment was of higher relative abundance in the heavier fractions from labeled samples compared with the heavier fractions from the unlabeled control samples, indicating that the organism producing this fragment was responsible for label uptake (hence RDX degradation). Partial 16S rRNA gene sequencing indicated the organisms represented by fragment 260 bp belonged to either Sphingobacteria (phylum Bacteroidetes) or the phylum Acidobacteria. To date, these organisms have not previously been directly linked to RDX degradation. The 16S rRNA sequences were compared with the NCBI database and, in all cases, were most similar to uncultured bacteria. The results suggest SIP is a viable method for discovering novel, previously uncultured, RDX degraders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian, N. R., & Arnett, C. M. (2004). Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Current Microbiology, 48(5), 332–340.

    Article  CAS  Google Scholar 

  • Adrian, N. R., & Chow, T. (2001). Identification of hydroxylamino-dinitroso-1,3,5-triazine as a transient intermediate formed during the anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Environmental Toxicology and Chemistry, 20(9), 1874–1877.

    Article  CAS  Google Scholar 

  • Annamaria, H., Manno, D., et al. (2010). Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: new insights into the degradation pathway. Environmental Science & Technology, 44(24), 9330–9336.

    Article  CAS  Google Scholar 

  • Arnett, C. M., & Adrian, N. R. (2009). Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions. Biodegradation, 20(1), 15–26.

    Article  CAS  Google Scholar 

  • Arnett, C. M., Adrian, N. R., et al. (2009). Sulfate-mediated bacterial population shift in a hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading anaerobic enrichment culture. Bioremediation Journal, 13(1), 52–63.

    Article  CAS  Google Scholar 

  • Barns, S. M., Cain, E. C., et al. (2007). Acidobactetia phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Applied and Environmental Microbiology, 73(9), 3113–3116.

    Article  CAS  Google Scholar 

  • Beller, H. R. (2002). Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. Water Research, 36(10), 2533–2540.

    Article  CAS  Google Scholar 

  • Bhushan, B., Halasz, A., et al. (2004). Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochemical Biophysical Research Communications, 316, 816–821.

    Article  CAS  Google Scholar 

  • Bhushan, B., Trott, S., et al. (2003). Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome p450: insight into the mechanism of RDX biodegradation by Rhodococcus sp strain DN22. Applied and Environmental Microbiology, 69(3), 1347–1351.

    Article  CAS  Google Scholar 

  • Binks, P. R., Nicklin, S., et al. (1995). Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas-maltophilia Pb1. Applied and Environmental Microbiology, 61(4), 1318–1322.

    CAS  Google Scholar 

  • Boopathy, R., Gurgas, M., et al. (1998). Metabolism of explosive compounds by sulfate-reducing bacteria. Current Microbiology, 37(2), 127–131.

    Article  CAS  Google Scholar 

  • Branco, R., Chung, A. P., et al. (2005). Impact of chromium-contaminated wastewaters on the microbial community of a river. FEMS Microbiology Ecology, 54(1), 35–46.

    Article  CAS  Google Scholar 

  • Chan, O. C., Yang, X. D., et al. (2006). 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. Fems Microbiology Ecology, 58(2), 247–259.

    Article  CAS  Google Scholar 

  • Cho, K. C., Lee, D. G., et al. (2013). Application of 13C-stable isotope probing to identify RDX-degrading microorganisms in groundwater. Environmental Pollution, 178, 350–360.

    Article  CAS  Google Scholar 

  • Clement, B. G., Kehl, L. E., et al. (1998). Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. Journal of Microbiological Methods, 31(3), 135–142.

    Article  CAS  Google Scholar 

  • Coates, J. D., Ellis, D. J., et al. (1999). Geothrix fermentans gen. nov., sp nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. International Journal of Systematic Bacteriology, 49, 1615–1622.

    Article  CAS  Google Scholar 

  • Cole, J. R., Wang, Q., et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, D141–D145.

    Article  CAS  Google Scholar 

  • Coleman, N. V., Nelson, D. R., et al. (1998). Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biology & Biochemistry, 30(8–9), 1159–1167.

    Article  Google Scholar 

  • Coleman, N. V., Spain, J. C., et al. (2002). Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. Journal of Applied Microbiology, 93(3), 463–472.

    Article  CAS  Google Scholar 

  • Crocetti, G. R., Banfield, J. F., et al. (2002). Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology, 148, 3353–3364.

    CAS  Google Scholar 

  • Cupples, A. M., Shaffer, E. A., et al. (2007). DNA buoyant density shifts during N-15-DNA stable isotope probing. Microbiological Research, 162(4), 328–334.

    Article  CAS  Google Scholar 

  • Cupples, A. M., & Sims, G. K. (2007). Identification of in situ 2,4-dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing. Soil Biology & Biochemistry, 39(1), 232–238.

    Article  CAS  Google Scholar 

  • Dunbar, J., Takala, S., et al. (1999). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Applied and Environmental Microbiology, 65(4), 1662–1669.

    CAS  Google Scholar 

  • Eaton, H. L., De Lorme, M., et al. (2011). Ovine ruminal microbes are capable of biotransforming hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Microbial Ecology, 62(2), 274–286.

    Article  CAS  Google Scholar 

  • Eichorst, S. A., Breznak, J. A., et al. (2007). Isolation and characterization of soil bacteria that define Teniglobus gen. nov., in the phylum Acidobacteria. Applied and Environmental Microbiology, 73(8), 2708–2717.

    Article  CAS  Google Scholar 

  • Fournier, D., Halasz, A., et al. (2002). Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp strain DN22. Applied and Environmental Microbiology, 68(1), 166–172.

    Article  CAS  Google Scholar 

  • Fukunaga, Y., Kurahashi, M., et al. (2008). Acanthopleuribacter pedis gen. nov., sp nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam.nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov and Holophagae classis nov in the phylum 'Acidobacteria'. International Journal of Systematic and Evolutionary Microbiology, 58, 2597–2601.

    Article  CAS  Google Scholar 

  • Fuller, M. E., McClay, K., et al. (2010a). Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) bioremediation in groundwater: are known RDX-degrading bacteria the dominant players? Bioremediation Journal, 14(3), 121–134.

    Article  CAS  Google Scholar 

  • Fuller, M. E., Perreault, N., et al. (2010b). Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Letters in Applied Microbiology, 51(3), 313–318.

    Article  CAS  Google Scholar 

  • Gregory, K. B., Larese-Casanova, P., et al. (2004). Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by fell bound to magnetite. Environmental Science & Technology, 38(5), 1408–1414.

    Article  CAS  Google Scholar 

  • Hawari, J., Beaudet, S., et al. (2000a). Microbial degradation of explosives: biotransformation versus mineralization. Applied Microbiology and Biotechnology, 54(5), 605–618.

    Article  CAS  Google Scholar 

  • Hawari, J., Halasz, A., et al. (2000b). Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Applied and Environmental Microbiology, 66(6), 2652–2657.

    Article  CAS  Google Scholar 

  • Hugenholtz, P., Goebel, B. M., et al. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity (vol 180, pg 4765, 1998). Journal of Bacteriology, 180(24), 6793–6793.

    Google Scholar 

  • Indest, K. J., Crocker, F. H., et al. (2007). A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene. Journal of Microbiological Methods, 68(2), 267–274.

    Article  CAS  Google Scholar 

  • Indest, K. J., Jung, C. M., et al. (2010). Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Applied and Environmental Microbiology, 76(19), 6329–6337.

    Article  CAS  Google Scholar 

  • Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72(3), 1719–1728.

    Article  CAS  Google Scholar 

  • Khan, M. I., Lee, J., et al. (2012). Microbial degradation and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine. Journal of Microbiology and Biotechnology, 22(10), 1311–1323.

    Article  CAS  Google Scholar 

  • Kishimoto, N., Kosako, Y., et al. (1991). Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Current Microbiology, 22(1), 1–7.

    Article  CAS  Google Scholar 

  • Kitts, C. L., Cunningham, D. P., et al. (1994). Isolation of 3 hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Applied and Environmental Microbiology, 60(12), 4608–4611.

    CAS  Google Scholar 

  • Kitts, C. L., Green, C. E., et al. (2000). Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Canadian Journal of Microbiology, 46(3), 278–282.

    Article  CAS  Google Scholar 

  • Kleinsteuber, S., Muller, F. D., et al. (2008). Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake. Fems Microbiology Ecology, 63(1), 107–117.

    Article  CAS  Google Scholar 

  • Koch, I. H., Gich, F., et al. (2008). Edaphobacter modestus gen. nov., sp nov., and Edaphobacter aggregans sp nov., acidobacteria isolated from alpine and forest soils. International Journal of Systematic and Evolutionary Microbiology, 58, 1114–1122.

    Article  CAS  Google Scholar 

  • Kwon, M. J., & Finneran, K. T. (2008a). Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens. Biodegradation, 19(5), 705–715.

    Article  CAS  Google Scholar 

  • Kwon, M. J., & Finneran, K. T. (2008b). Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) biodegradation kinetics amongst several Fe(III)-reducing genera. Soil & Sediment Contamination, 17(2), 189–203.

    Article  CAS  Google Scholar 

  • Kwon, M. J., & Finneran, K. T. (2010). Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material. Biodegradation, 21(6), 923–937.

    Article  CAS  Google Scholar 

  • Kwon, M. J., O'Loughlin, E. J., et al. (2011). Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material. Chemosphere, 84(9), 1223–1230.

    Article  CAS  Google Scholar 

  • Larese-Casanova, P., & Scherer, M. M. (2008). Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by green rusts. Environmental Science & Technology, 42(11), 3975–3981.

    Article  CAS  Google Scholar 

  • Lee, S. H., Ka, J. O., et al. (2008). Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiology Letters, 285(2), 263–269.

    Article  CAS  Google Scholar 

  • Liesack, W., Bak, F., et al. (1994). Holophaga foetida gen-nov, sp-nov, a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Archives of Microbiology, 162(1–2), 85–90.

    CAS  Google Scholar 

  • Liu, W. T., Marsh, T. L., et al. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63(11), 4516–4522.

    CAS  Google Scholar 

  • Livermore, J., Jin, Y. O., et al. (2013). Microbial community dynamics during acetate biostimulation of RDX-contaminated groundwater. Environmental Science & Technology, 47(14), 7672–7678.

    Article  CAS  Google Scholar 

  • Ludwig, W., Bauer, S. H., et al. (1997). Detection and in situ identification of representatives of a widely distributed new bacterial phylum. Fems Microbiology Letters, 153(1), 181–190.

    Article  CAS  Google Scholar 

  • Luo, C. L., Xie, S. G., et al. (2009). Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Applied and Environmental Microbiology, 75(13), 4644–4647.

    Article  CAS  Google Scholar 

  • Luo, W., D'Angelo, E. M., et al. (2008). Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere, 70(3), 364–373.

    Article  CAS  Google Scholar 

  • Macbeth, T. W., Cummings, D. E., et al. (2004). Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Applied and Environmental Microbiology, 70(12), 7329–7341.

    Article  CAS  Google Scholar 

  • McCormick, N. G., Cornell, J. H., et al. (1981). Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Applied and Environmental Microbiology, 42(5), 817–823.

    CAS  Google Scholar 

  • Meisinger, D. B., Zimmermann, J., et al. (2007). In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environmental Microbiology, 9(6), 1523–1534.

    Article  CAS  Google Scholar 

  • Mendez, M. O., Neilson, J. W., et al. (2008). Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Applied and Environmental Microbiology, 74(12), 3899–3907.

    Article  CAS  Google Scholar 

  • Moshe, S. S. B., Ronen, Z., et al. (2009). Sequential biodegradation of TNT, RDX and HMX in a mixture. Environmental Pollution, 157(8–9), 2231–2238.

    Article  Google Scholar 

  • Naja, G., Halasz, A., et al. (2008). Degradation of hexahydro-1,3,5-trinitro-1,15-triazine (RDX) using zerovalent iron nanoparticles. Environmental Science & Technology, 42(12), 4364–4370.

    Article  CAS  Google Scholar 

  • Oh, S. Y., Chiu, P. C., et al. (2008). Reductive transformation of 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and nitroglycerin by pyrite and magnetite. Journal of Hazardous Materials, 158(2–3), 652–655.

    Article  CAS  Google Scholar 

  • Perumbakkam, S., & Craig, A. M. (2012). Biochemical and microbial analysis of ovine rumen fluid incubated with 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX). Current Microbiology, 65(2), 195–201.

    Article  CAS  Google Scholar 

  • Pudge, I. B., Daugulis, A. J., et al. (2003). The use of Enterobacter cloacae ATCC 43560 in the development of a two-phase partitioning bioreactor for the destruction of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX). Journal of Biotechnology, 100(1), 65–75.

    Article  CAS  Google Scholar 

  • Quaiser, A., Lopez-Garcia, P., et al. (2008). Comparative analysis of genome fragments of Acidobacteria from deep Mediterranean plankton. Environmental Microbiology, 10(10), 2704–2717.

    Article  CAS  Google Scholar 

  • Regan, K. M., & Crawford, R. L. (1994). Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnology Letters, 16(10), 1081–1086.

    Article  CAS  Google Scholar 

  • Ringelberg, D., Richmond, M., et al. (2008). Utility of lipid biomarkers in support of bioremediation efforts at army sites. Journal of Microbiological Methods, 74(1), 17–25.

    Article  CAS  Google Scholar 

  • Roh, H., Yu, C. P., et al. (2009). Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. Environmental Science & Technology, 43(7), 2505–2511.

    Article  CAS  Google Scholar 

  • Ronen, Z., Yanovich, Y., et al. (2008). Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone. Chemosphere, 73(9), 1492–1498.

    Article  CAS  Google Scholar 

  • Rylott, E. L., Lorenz, A., et al. (2011). Biodegradation and biotransformation of explosives. Current Opinion in Biotechnology, 22(3), 434–440.

    Article  CAS  Google Scholar 

  • Sahu, A. K., Conneely, T., et al. (2009). Hydrogenotrophic denitrification and perchlorate reduction in ion exchange brines using membrane biofilm reactors. Biotechnology and Bioengineering, 104(3), 483–491.

    Article  CAS  Google Scholar 

  • Seth-Smith, H. M. B., Edwards, J., et al. (2008). The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Applied and Environmental Microbiology, 74(14), 4550–4552.

    Article  CAS  Google Scholar 

  • Seth-Smith, H. M. B., Rosser, S. J., et al. (2002). Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Applied and Environmental Microbiology, 68(10), 4764–4771.

    Article  CAS  Google Scholar 

  • Sherburne, L. A., Shrout, J. D., et al. (2005). Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation, 16(6), 539–547.

    Article  CAS  Google Scholar 

  • Singh, B., Kaur, J., et al. (2012). Microbial remediation of explosive waste. Critical Reviews in Microbiology, 38(2), 152–167.

    Article  CAS  Google Scholar 

  • Singh, J., Comfort, S. D., et al. (1998). Remediating RDX-contaminated water and soil using zero-valent iron. Journal of Environmental Quality, 27(5), 1240–1245.

    Article  CAS  Google Scholar 

  • Singh, R., Soni, P., et al. (2009). Biodegradation of high explosive production effluent containing RDX and HMX by denitrifying bacteria. World Journal of Microbiology & Biotechnology, 25(2), 269–275.

    Article  CAS  Google Scholar 

  • Sun, W. M., & Cupples, A. M. (2012). Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. Applied and Environmental Microbiology, 78(4), 972–980.

    Article  CAS  Google Scholar 

  • Sun, W. M., Sun, X. X., et al. (2012). Anaerobic methyl tert-butyl ether-degrading microorganisms identified in wastewater treatment plant samples by stable isotope probing. Applied and Environmental Microbiology, 78(8), 2973–2980.

    Article  CAS  Google Scholar 

  • Sun, W. M., Xie, S. G., et al. (2010). Direct link between toluene degradation in contaminated-site microcosms and a Polaromonas strain. Applied and Environmental Microbiology, 76(3), 956–959.

    Article  CAS  Google Scholar 

  • Thompson, K. T., Crocker, F. H., et al. (2005). Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Applied and Environmental Microbiology, 71(12), 8265–8272.

    Article  CAS  Google Scholar 

  • Van Aken, B., Yoon, J. M., et al. (2004). Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, an octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp associated with poplar tissues (Populus deltoides x nigra DN34). Applied and Environmental Microbiology, 70(1), 508–517.

    Article  Google Scholar 

  • Xie, S. G., Sun, W. M., et al. (2010). Stable isotope probing identifies novel m-xylene degraders in soil microcosms from contaminated and uncontaminated sites. Water Air and Soil Pollution, 212(1–4), 113–122.

    Article  CAS  Google Scholar 

  • Xie, S. G., Sun, W. M., et al. (2011). Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation, 22(1), 71–81.

    Article  CAS  Google Scholar 

  • Ye, J., Singh, A., et al. (2004). Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World Journal of Microbiology & Biotechnology, 20(2), 117–135.

    Article  CAS  Google Scholar 

  • Young, D. M., Unkefer, P. J., et al. (1997). Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens. Biotechnology and Bioengineering, 53(5), 515–522.

    Article  CAS  Google Scholar 

  • Zhang, C. L., & Hughes, J. B. (2003). Biodegradation pathways of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Clostridium acetobutylicum cell-free extract. Chemosphere, 50(5), 665–671.

    Article  CAS  Google Scholar 

  • Zhang, L., & Xu, Z. H. (2008). Assessing bacterial diversity in soil. Journal of Soils and Sediments, 8(6), 379–388.

    Article  CAS  Google Scholar 

  • Zhao, J. S., Greer, C. W., et al. (2004a). Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Canadian Journal of Microbiology, 50(2), 91–96.

    Article  Google Scholar 

  • Zhao, J. S., Halasz, A., et al. (2002). Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Applied and Environmental Microbiology, 68(11), 5336–5341.

    Article  CAS  Google Scholar 

  • Zhao, J. S., Manno, D., et al. (2005). Shewanella sediminis sp nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-trinitro-degrading bacterium from marine sediment. International Journal of Systematic and Evolutionary Microbiology, 55, 1511–1520.

    Article  CAS  Google Scholar 

  • Zhao, J. S., Manno, D., et al. (2006). Shewanella halifaxensis sp nov., a novel obligately respiratory and denitrifying psychrophile. International Journal of Systematic and Evolutionary Microbiology, 56, 205–212.

    Article  CAS  Google Scholar 

  • Zhao, J. S., Paquet, L., et al. (2003). Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Applied Microbiology and Biotechnology, 63(2), 187–193.

    Article  CAS  Google Scholar 

  • Zhao, J. S., Paquet, L., et al. (2004b). Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2 producing fermentative anaerobic bacteria. FEMS Microbiology Letters, 237(1), 65–72.

    Article  CAS  Google Scholar 

  • Zhao, J. S., Spain, J., et al. (2004c). Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiology Ecology, 49(3), 349–357.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Strategic Environmental Research and Development Program. The following people are acknowledged for their work on this project. Thanks to Dan Williams for sample collection and Yanglang Pan for analytical assistance. The authors thank Stuart Strand and Peter Andeer for supplying R. rhodochrous 11Y genomic DNA for the xplA studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison M. Cupples.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayamani, I., Manzella, M.P. & Cupples, A.M. RDX Degradation Potential in Soils Previously Unexposed to RDX and the Identification of RDX-Degrading Species in One Agricultural Soil Using Stable Isotope Probing. Water Air Soil Pollut 224, 1745 (2013). https://doi.org/10.1007/s11270-013-1745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1745-4

Keywords

Navigation