Skip to main content
Log in

Synthesis and Characterization of Thiolated Chitosan Beads for Removal of Cu(II) and Cd(II) from Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Removal of Cu(II) and Cd(II) from wastewater using porous chitosan beads is likely to be enhanced by the introduction of thiol groups (−SH). This is because, in accordance with the Hard Soft Acid Base concept, the soft Lewis base of –SH forms a strong bond with soft Lewis acid of Cd(II) or with borderline Lewis acids such as Cu(II). Possible formation of thiourea and disulfide crosslinks (−S–S–) may also confer increased bead stability in acidic solution. Thiolated chitosan beads (ETB) prepared and investigated in this study had a total sulfur content of 7.9 %. The thiolation process slightly increased the Brunauer-Emmett-Teller surface area of the chitosan beads from 39.5 to 46.3 m2/g. This ETB was categorised as a microporous material (pore aperture: 1.8 nm) with multiple and uniform porous layers. Analysis by X-ray photoelectron spectroscopy indicated the presence of three sulfur species, S(−I), S(−II) and S(V) attributed to –S–S–, –SH and sulfonate (−SO3 ) groups. The Langmuir sorption capacity, q max, for Cd(II) was improved by 18 times by thiolation of chitosan. However, the q max for Cu(II) by ETB was seven times lower than that of pristine chitosan beads, possibly due to exhaustion of amine groups (−NH2). The batch sorption data was generally fitted well by a linearised Freundlich isotherm model and a Ho’s pseudo-second-order kinetic model, indicating metal interaction with the heterogeneous surface of ETB and chemical adsorption as the possible rate-limiting step, respectively. The metal uptake has resulted in the oxidation of –SH to –SO3 group in ETB, thereby decreasing the stability of metal-sulfide bonds as well as their metal uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfarra, A., Frackowiak, E., & Béguin, F. (2004). The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Applied Surface Science, 228(1–4), 84–92.

    Article  CAS  Google Scholar 

  • Atia, A. A. (2005). Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy, 80(1–2), 13–22.

    Article  CAS  Google Scholar 

  • Atzei, D., De Filippo, D., Rossi, A., Caminiti, R., & Sadun, C. (1995). XPS and LAXS study of 1,3-thiazolidine-2-thione and its complexes with Co(II) and Zn(II). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51(1), 11–20.

    Article  Google Scholar 

  • Azlan, K., Wan Saime, W. N., & Lai Ken, L. (2009). Chitosan and chemically modified chitosan beads for acid dyes sorption. Journal of Environmental Sciences, 21(3), 296–302.

    Article  CAS  Google Scholar 

  • Benguella, B., & Benaissa, H. (2002). Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Research, 36, 2463–2474.

    Article  CAS  Google Scholar 

  • Cárdenas, G., Díaz, V. J., Meléndrez, M., Cruzat, C. C., & García Cancino, A. (2009). Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polymer Bulletin, 62(4), 511–524.

    Article  Google Scholar 

  • Castner, D. G., Hinds, K., & Grainger, D. W. (1996). X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir, 12(21), 5083–5086.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Lee, D. S., Lee, M. W., & Woo, S. H. (2010). Enhanced molar sorption ratio for naphthalene through the impregnation of surfactant into chitosan hydrogel beads. Bioresource Technology, 101(12), 4315–4321.

    Article  CAS  Google Scholar 

  • Dahiya, S., Tripathi, R. M., & Hegde, A. G. (2008). Biosorption of lead and copper from aqueous solutions by pre-treated crab and Arca shell biomass. Bioresource Technology, 99(1), 179–187.

    Article  CAS  Google Scholar 

  • Dambies, L., Guimon, C., Yiacoumi, S., & Guibal, E. (2000). Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(2–3), 203–214.

    Article  Google Scholar 

  • Donia, A. M., Atia, A. A., & Heniesh, A. M. (2008). Efficient removal of Hg(II) using magnetic chelating resin derived from copolymerization of bisthiourea/thiourea/glutaraldehyde. Separation and Purification Technology, 60(1), 46–53.

    Article  CAS  Google Scholar 

  • Erve, J. C. L., Amarnath, V., Graham, D. G., Sills, R. C., Morgan, A. L., & Valentine, W. M. (1998). Carbon disulfide and N, N-diethyldithiocarbamate generate thiourea cross-links on erythrocyte spectrin in vivo. Chemical Research in Toxicology, 11(5), 544–549.

    Article  CAS  Google Scholar 

  • Gavilan, K. C., Pestov, A. V., Garcia, H. M., Yatluk, Y., Roussy, J., & Guibal, E. (2009). Mercury sorption on a thiocarbamoyl derivative of chitosan. Journal of Hazardous Materials, 165(1–3), 415–426.

    Article  CAS  Google Scholar 

  • Gong, H., Yin, M., & Liu, M. (2003). In situ coordination-induced langmuir film formation of water-soluble 2,5-dimercapto-1,3,4-thiadiazole at the air/water interface and the growth of metal sulfide nanostructures in their templated Langmuir − Schaefer films. Langmuir, 19(20), 8280–8286.

    Article  CAS  Google Scholar 

  • Goubert-Renaudin, S., Gaslain, F., Marichal, C., Lebeau, B., Schneider, R., & Walcarius, A. (2009). Synthesis of dithiocarbamate-functionalized mesoporous silica-based materials: interest of one-step grafting. New Journal of Chemistry, 33(3), 528–537.

    Article  CAS  Google Scholar 

  • Horzum, N., Boyacı, E., Eroğlu, A. E., Shahwan, T., & Demir, M. M. (2010). Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations. Biomacromolecules, 11(12), 3301–3308.

    Article  CAS  Google Scholar 

  • Humeres, E., De, S. E. P., Debacher, N. A., & Aliev, A. E. (2002). Synthesis and coordinating ability of chitosan dithiocarbamate and analogs towards Cu(II) ions. Journal of Physical Organic Chemistry, 15(12), 852–857.

    Article  CAS  Google Scholar 

  • Juang, R. S., & Shao, H. J. (2002). A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Research, 36(12), 2999–3008.

    Article  CAS  Google Scholar 

  • Kagaya, S., Miyazaki, H., Ito, M., Tohda, K., & Kanbara, T. (2010). Selective removal of mercury(II) from wastewater using polythioamides. Journal of Hazardous Materials, 175(1–3), 1113–1115.

    Article  CAS  Google Scholar 

  • Kim, H. J., Graham, D. W., DiSpirito, A. A., Alterman, M. A., Galeva, N., Larive, C. K., et al. (2004). Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science, 305(5690), 1612–1615.

    Article  CAS  Google Scholar 

  • Kumar, A., Arienzo, M., Quayle, W., Christen, E., Grocke, S., Fattore, A., et al. (2009). In A. Kumar & E. Christen (Eds.), Developing a systematic approach to winery wastewater management (p. 149). Adelaide: CSIRO.

    Google Scholar 

  • Lasko, C. L., Pesic, B. M., & Oliver, D. J. (1993). Enhancement of the metal-binding properties of chitosan through synthetic addition of sulfur- and nitrogen-containing compounds. Journal of Applied Polymer Science, 48(9), 1565–1570.

    Article  CAS  Google Scholar 

  • Muzzarelli, R., Tanfani, F., Mariotti, S., & Emanuelli, M. (1982). Preparation and characteristic properties of dithiocarbamate chitosan, a chelating polymer. Carbohydrate Research, 104(2), 235–243.

    Article  CAS  Google Scholar 

  • Nunthanid, J., Laungtana-anan, M., Sriamornsak, P., Limmatvapirat, S., Puttipipatkhachorn, S., Lim, L. Y., et al. (2004). Characterization of chitosan acetate as a binder for sustained release tablets. Journal of Controlled Release, 99(1), 15–26.

    Article  CAS  Google Scholar 

  • Osifo, P. O., Webster, A., van der Merwe, H., Neomagus, H. W. J. P., van der Gun, M. A., & Grant, D. M. (2008). The influence of the degree of cross-linking on the adsorption properties of chitosan beads. Bioresource Technology, 99(15), 7377–7382.

    Article  CAS  Google Scholar 

  • Ozturk, I. I., Hadjikakou, S. K., Hadjiliadis, N., Kourkoumelis, N., Kubicki, M., Tasiopoulos, A. J., et al. (2009). New antimony(III) bromide complexes with thioamides: synthesis, characterization, and cytostatic properties. Inorganic Chemistry, 48(5), 2233–2245.

    Article  CAS  Google Scholar 

  • Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 85(22), 3533–3539.

    Article  CAS  Google Scholar 

  • Popuri, S. R., Vijaya, Y., Boddu, V. M., & Abburi, K. (2009). Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 100(1), 194–199.

    Article  CAS  Google Scholar 

  • Renault, F., Sancey, B., Badot, P. M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes—an eco-friendly approach. European Polymer Journal, 45(5), 1337–1348.

    Article  CAS  Google Scholar 

  • Rengaraj, S., Yeon, J.-W., Kim, Y., Jung, Y., Ha, Y.-K., & Kim, W.-H. (2007). Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis. Journal of Hazardous Materials, 143(1–2), 469–477.

    Article  CAS  Google Scholar 

  • Rieley, H., Kendall, G. K., Zemicael, F. W., Smith, T. L., & Yang, S. (1998). X-ray studies of self-assembled monolayers on coinage metals. 1. Alignment and photooxidation in 1,8-octanedithiol and 1-octanethiol on Au. Langmuir, 14(18), 5147–5153.

    Article  CAS  Google Scholar 

  • Sankararamakrishnan, N., & Sanghi, R. (2006). Preparation and characterization of a novel xanthated chitosan. Carbohydrate Polymers, 66(2), 160–167.

    Article  CAS  Google Scholar 

  • Sankararamakrishnan, N., Dixit, A., Iyengar, L., & Sanghi, R. (2006). Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Bioresource Technology, 97(18), 2377–2382.

    Article  CAS  Google Scholar 

  • Skinner, W. M., Prestidge, C. A., & Smart, R. S. C. (1996). Irradiation effects during XPS studies of Cu(II) activation of zinc sulphide. Surface and Interface Analysis, 24(9), 620–626.

    Article  CAS  Google Scholar 

  • Sousa, K. S., Silva Filho, E. C., & Airoldi, C. (2009). Ethylenesulfide as a useful agent for incorporation into the biopolymer chitosan in a solvent-free reaction for use in cation removal. Carbohydrate Research, 344(13), 1716–1723.

    Article  CAS  Google Scholar 

  • Van Zwieten, M., Stovold, G., & Van Zwieten, L. (2007). Alternatives to copper for disease control in the Australian organic industry (p. 82). Canberra: Rural Industries Research and Development Corporation.

    Google Scholar 

  • Vold, I. M. N., Vårum, K. M., Guibal, E., & Smidsrød, O. (2003). Binding of ions to chitosan—selectivity studies. Carbohydrate Polymers, 54(4), 471–477.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., Ariff, N., & Hanafiah, M. (2010a). Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water, Air, & Soil Pollution, 206(1), 225–236.

    Article  Google Scholar 

  • Wan Ngah, W. S., Ariff, N. F. M., Hashim, A., & Hanafiah, M. A. K. M. (2010b). Malachite green adsorption onto chitosan coated bentonite beads: isotherms, kinetics and mechanism. CLEAN – Soil, Air, Water, 38(4), 394–400.

    Article  Google Scholar 

  • Wang, L., Xing, R., Liu, S., Cai, S., Yu, H., Feng, J., et al. (2010). Synthesis and evaluation of a thiourea-modified chitosan derivative applied for adsorption of Hg(II) from synthetic wastewater. International Journal of Biological Macromolecules, 46(5), 524–528.

    Article  CAS  Google Scholar 

  • Yong, S. K., Bolan, N. S., Lombi, E., Skinner, W., & Guibal, E. (2012). Sulfur-containing chitin and chitosan derivatives as trace metal adsorbents: a review. Critical Reviews in Environmental Science and Technology. doi:10.1080/10643389.2012.671734.

    Google Scholar 

Download references

Acknowledgment

The senior author would like to thank University of South Australia for UniSA President Scholarship award and Universiti Teknologi MARA for UiTM Staff Scholarship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Kong Yong.

Additional information

Guest Editors: R Naidu, Euan Smith, MH Wong, Megharaj Mallavarapu, Nanthi Bolan, Albert Juhasz, and Enzo Lombi

This article is part of the Topical Collection on Remediation of Site Contamination

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, S.K., Bolan, N., Lombi, E. et al. Synthesis and Characterization of Thiolated Chitosan Beads for Removal of Cu(II) and Cd(II) from Wastewater. Water Air Soil Pollut 224, 1720 (2013). https://doi.org/10.1007/s11270-013-1720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1720-0

Keywords

Navigation