Skip to main content
Log in

Diffuse Water Pollution by Anthraquinone and Azo Dyes in Environment Importantly Alters Foliage Volatiles, Carotenoids and Physiology in Wheat (Triticum aestivum)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

To gain insight into the effects of aqueous solutions of different dyes on plant performance and identify the most promising traits for fast assessment of toxicity, we studied the influences of two anthraquinone dyes (Optilan Blue and Lanasyn Blue) and four azo dyes (Lanasyn Red, Nylosan Red, Nylosan Dark Brown and Lanasyn Dark Brown) at two different concentrations (0.5 and 1.5 mg l−1) on foliage photosynthesis, photosynthetic pigments and emissions of lipoxygenase pathway products (LOX; green leaf volatiles) and monoterpenes in wheat (Triticum aestivum L. cv. “Lovrin”). Net assimilation rate was only inhibited by the highest concentration of Nylosan Red, while stomatal conductance to water vapor was strongly influenced by all azo dyes. Concentrations of photosynthetic pigments, chlorophylls and carotenoids, were most strongly reduced in treatments with azo dyes especially with those which contained chromium in their molecular structure. These data collectively indicate important reduction of foliage physiological activity by textile dyes and indicate that emissions of leaf volatiles can provide a promising tool to assess the toxicity of different dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali, S., Zeng, F., Qiu, L., & Zhang, G. (2011). The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biologia Plantarum, 55, 291–296.

    Article  CAS  Google Scholar 

  • Beauchamp, J., Wisthaler, A., Hansel, A., Kleist, E., Miebach, M., Niinemets, Ü., et al. (2005). Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant, Cell & Environment, 28, 1334–1343.

    Article  CAS  Google Scholar 

  • Buch, K., Stransky, H., Bigus, H. J., & Hager, A. (1994). Enhancement by artificial electron acceptors of thylakoid lumen acidification and zeaxanthin formation. Journal of Plant Physiology, 144, 641–648.

    Article  CAS  Google Scholar 

  • Centritto, M., Tognetti R., Leitgeb E., Strelkova K., and Cohen, S. (2011). Chapter 3. Above ground processes — anticipation climate change influences. In Forest management and the water cycle. An ecosystem based approach. Ecological Studies Volume 212: 31–64. Springer, New York.

  • Chatterjee, J., & Chatterjee, C. (2000). Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution, 109, 69–74.

    Article  CAS  Google Scholar 

  • Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.

    Article  CAS  Google Scholar 

  • Chidambaram, A., Sundaramoorthy, P., Murugan, A., Ganesh, K. S., & Baskaran, L. (2009). Chromium induced cytotoxicity in blackgram (Vigna mungo L.). Iranian Journal of Environmental Health Science & Engineering, 6, 17–22.

    CAS  Google Scholar 

  • Collins, A. R. (2001). Carotenoids and genomic stability. Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis, 475, 21–28.

    Article  CAS  Google Scholar 

  • Copolovici, L., & Niinemets, Ü. (2010). Flooding induced emissions of volatile signaling compounds in three tree species with differing waterlogging tolerance. Plant, Cell & Environment, 33, 1582–1594.

    CAS  Google Scholar 

  • Copolovici, L., Kännaste, A., & Niinemets, Ü. (2009). Gas chromatography–mass spectrometry method for determination of monoterpene and sesquiterpene emissions from stressed plants. Studia Chemia Universitatis Babeş-Bolyai, 54, 329–339.

    CAS  Google Scholar 

  • Copolovici, L., Kännaste, A., Pazouki, L., & Niinemets, Ü. (2012). Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. Journal of Plant Physiology, 169, 664–672.

    Article  CAS  Google Scholar 

  • Davies, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N., & Grossi, J. A. S. (2002). Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition, 25, 2389–2407.

    Article  CAS  Google Scholar 

  • De Pinto, M. C., Locato, V., & De Gara, L. (2012). Redox regulation in plant programmed cell death. Plant, Cell & Environment, 35, 234–244.

    Article  Google Scholar 

  • Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z. P., & Feller, U. (2006). Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. Journal of Plant Nutrition, 29, 451–468.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., & Adams, W. W. I. I. I. (2006). Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation: Tansley review. The New Phytologist, 172, 11–21.

    Article  CAS  Google Scholar 

  • Dey, S. K., Jena, P. P., & Kundu, S. (2009). Antioxidative efficiency of Triticum aestivum L. exposed to chromium stress. Journal of Environmental Biology, 30, 539–544.

    CAS  Google Scholar 

  • Diwan, H., Ahmad, A., & Lqbal, M. (2012). Chromium-induced alterations in photosynthesis and associated attributes in Indian mustard. Journal of Environmental Biology, 33, 239–244.

    CAS  Google Scholar 

  • Eckert, M., Biela, A., Siefritz, F., & Kaldenhoff, R. (1999). New aspects of plant aquaporin regulation and specificity. Journal of Experimental Botany, 50, 1541–1545.

    CAS  Google Scholar 

  • Edwards, L. C., Freeman, H. S., & Claxton, L. D. (2004). Developing azo and formazan dyes based on environmental considerations: Salmonella mutagenicity. Mutation Research, 546, 17–28.

    Article  CAS  Google Scholar 

  • Epolito, W. J., Lee, Y. H., Bottomley, L. A., & Pavlostathis, S. G. (2005). Characterization of the textile anthraquinone dye Reactive Blue 4. Dyes and Pigments, 67, 35–46.

    Article  CAS  Google Scholar 

  • Feussner, I., & Wasternack, C. (2002). The lipoxygenase pathway. Annual Review of Plant Biology, 53, 275–297.

    Article  CAS  Google Scholar 

  • Field, C. B., Campbell, J. E., & Lobell, D. B. (2008). Biomass energy: the scale of the potential resource. Trends in Ecology & Evolution, 23, 65–72.

    Article  Google Scholar 

  • Garg, V. K., & Kaushik, P. (2006). Influence of short-term irrigation of textile mill wastewater on the growth of chickpea cultivars. Chemistry and Ecology, 22, 193–200.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  Google Scholar 

  • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., et al. (1995). A global model of natural volatile organic-compound emissions. Journal of Geophysical Research-Atmospheres, 100, 8873–8892.

    Article  CAS  Google Scholar 

  • Havaux, M. (1998). Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science, 3, 147–151.

    Article  Google Scholar 

  • Holopainen, J. K. (2004). Multiple functions of inducible plant volatiles. Trends in Plant Science, 9, 529–533.

    Article  CAS  Google Scholar 

  • Holopainen, J. K. (2011). Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? Tree Physiology, 31, 1356–1377.

    Article  CAS  Google Scholar 

  • Kaushik, P., Garg, V. K., & Singh, B. (2005). Effect of textile effluents on growth performance of wheat cultivars. Bioresource Technology, 96, 1189–1193.

    Article  CAS  Google Scholar 

  • Kaya, A., Yigit, E., & Akbulut, G. B. (2012). The effects of reactive black 5 textile dye on peroxidase activity, lipid peroxidation and total chlorophyll concentration of Phaseolus Vulgaris L. Cv. "Gina". Fresenius Environmental Bulletin, 21, 54–60.

    CAS  Google Scholar 

  • Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33, 23–88.

    Article  CAS  Google Scholar 

  • Kesselmeier, J., Ciccioli, P., Kuhn, U., Stefani, P., Biesenthal, T., Rottenberger, S., et al. (2002). Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochemical Cycles, 16, 1126–1135.

    Article  Google Scholar 

  • Kholodova, V., Volkov, K., Abdeyeva, A., & Kuznetsov, V. (2011). Water status in Mesembryanthemum crystallinum under heavy metal stress. Environmental and Experimental Botany, 71, 382–389.

    CAS  Google Scholar 

  • Lee, Y. H., & Pavlostathis, S. G. (2004). Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Research, 38, 1838–1852.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K. (1999). The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 47–65.

    Article  CAS  Google Scholar 

  • Lopez-Luna, J., Gonzalez-Chavez, M. C., Esparza-Garcia, F. J., & Rodriguez-Vazquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials, 163, 829–834.

    Article  CAS  Google Scholar 

  • Loreto, F., & Schnitzler, J.-P. (2010). Abiotic stresses and induced BVOCs. Trends in Plant Science, 15, 154–166.

    Article  CAS  Google Scholar 

  • Loreto, F., Barta, C., Brilli, F., & Nogues, I. (2006). On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, Cell & Environment, 29, 1820–1828.

    Article  CAS  Google Scholar 

  • Matsui, K. (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 9, 274–280.

    Article  CAS  Google Scholar 

  • McGuinness, M., & Dowling, D. (2009). Plant-associated bacterial degradation of toxic organic compounds in soil. International Journal of Environmental Research and Public Health, 6, 2226–2247.

    Article  CAS  Google Scholar 

  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19.

    Article  CAS  Google Scholar 

  • Młodzińska, E. (2009). Survey of plant pigments: molecular and environmental determinants of plant colors. Acta Biologica Cracoviensia Series Botanica, 51, 7–16.

    Google Scholar 

  • Moawad, H., Abd El-Rahim, W. M., & Khalafallah, M. (2003). Evaluation of biotoxicity of textile dyes using two bioassays. Journal of Basic Microbiology, 43, 218–229.

    Article  CAS  Google Scholar 

  • Munne-Bosch, S., & Alegre, L. (2000). Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta, 210, 925–931.

    Article  CAS  Google Scholar 

  • Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 584, 2965–2973.

    Article  CAS  Google Scholar 

  • Niinemets, Ü. (2010). Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends in Plant Science, 15, 145–153.

    Article  CAS  Google Scholar 

  • Niinemets, Ü., Bilger, W., Kull, O., & Tenhunen, J. D. (1998). Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant, Cell & Environment, 21, 1205–1218.

    Article  CAS  Google Scholar 

  • Niinemets, Ü., Copolovici, L., & Hüve, K. (2010). High within-canopy variation in isoprene emission potentials in temperate trees: Implications for predicting canopy-scale isoprene fluxes. Journal of Geophysical Research, 115, G04029. doi:10.1029/2010JG001436.

    Article  Google Scholar 

  • Niinemets, Ü., Kuhn, U., Harley, P. C., Staudt, M., Arneth, A., Cescatti, A., et al. (2011). Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences, 8, 2209–2246.

    Article  CAS  Google Scholar 

  • Nilratnisakorn, S., Thiravetyan, P., & Nakbanpote, W. (2007). Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals. Science of the Total Environment, 384, 67–76.

    Article  CAS  Google Scholar 

  • Oliveira, M., Santos, M. A., & Pacheco, M. (2004). Glutathione protects heavy metal-induced inhibition of hepatic microsomal ethoxyresorufin O-deethylase activity in Dicentrarchus labrax L. Ecotoxicology and Environmental Safety, 58, 379–385.

    Article  CAS  Google Scholar 

  • Pérez-Urquiza, M., Ferrer, R., & Beltrán, J. L. (2000). Determination of sulfonated azo dyes in river water samples by capillary zone electrophoresis. Journal of Chromatography A, 883, 277–283.

    Article  Google Scholar 

  • Permyakova, M. D., Permyakov, A. V., Osipova, S. V., & Pshenichnikova, T. A. (2012). Lipoxygenase from the leaves of wheat grown under different water supply conditions. Applied Biochemistry and Microbiology, 48, 77–82.

    Article  CAS  Google Scholar 

  • Puvaneswari, N., Muthukrishnan, J., & Gunasekaran, P. (2006). Toxicity assessment and microbial degradation of azo dyes. Indian Journal of Experimental Biology, 44, 618–626.

    CAS  Google Scholar 

  • Rodriguez, E., Santos, C., Azevedo, R., Moutinho-Pereira, J., Correia, C., & Dias, M. C. (2012). Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiology and Biochemistry, 53, 94–100.

    Article  CAS  Google Scholar 

  • Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64, 1782–1806.

    Article  CAS  Google Scholar 

  • Shanker, A. K., Cervantes, C. H., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753.

    Article  CAS  Google Scholar 

  • Shanker, A. K., Djanaguiraman, M., & Venkateswarlu, B. (2009). Chromium interactions in plants: current status and future strategies. Metallomics, 1, 375–383.

    Article  CAS  Google Scholar 

  • Subrahmanyam, D. (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica, 46, 339–345.

    Article  CAS  Google Scholar 

  • Tanthapanichakoon, W., Ariyadejwanich, P., Japthong, P., Nakagawa, K., Mukai, S. R., & Tamon, H. (2005). Adsorption–desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Research, 39, 1347–1353.

    Article  CAS  Google Scholar 

  • Toome, M., Randjärv, P., Copolovici, L., Niinemets, Ü., Heinsoo, K., Luik, A., et al. (2010). Leaf rust induced volatile organic compounds signaling in willow during the infection. Planta, 232, 235–243.

    Article  CAS  Google Scholar 

  • Umbuzeiro, G. A., Freeman, H. S., Warren, S. H., Oliveira, D. P., Terao, Y., Watanabe, T., et al. (2005). The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere, 60, 55–64.

    Article  CAS  Google Scholar 

  • Velikova, V., Tsonev, T., Loreto, F., & Centritto, M. (2011). Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel. Environmental Pollution, 159, 1058–1066.

    Article  CAS  Google Scholar 

  • Vernay, P., Gauthier-Moussard, C., & Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere, 68, 1563–1575.

    Article  CAS  Google Scholar 

  • Vickers, C. E., Gershenzon, J., Lerdau, M. T., & Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283–291.

    Article  CAS  Google Scholar 

  • von Caemmerer, S., & Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376–387.

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, D. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zengin, F. K., & Munzuroglu, O. (2005). Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensia Series Botanica, 47, 157–164.

    Google Scholar 

Download references

Acknowledgements

This paper was accomplished with the support of EURODOC “Doctoral Scholarships for research performance at European level” project, financed by the European Social Fund and Romanian Government. Funding for this research has been also provided by the European Commission through European Regional Fund (the Center of Excellence in Environmental Adaptation), the Estonian Ministry of Science and Education (grant SF1090065s07) and the Estonian Science Foundation (grant 9089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian Copolovici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copaciu, F., Opriş, O., Coman, V. et al. Diffuse Water Pollution by Anthraquinone and Azo Dyes in Environment Importantly Alters Foliage Volatiles, Carotenoids and Physiology in Wheat (Triticum aestivum). Water Air Soil Pollut 224, 1478 (2013). https://doi.org/10.1007/s11270-013-1478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1478-4

Keywords

Navigation