Skip to main content
Log in

A Comparison Between Phragmites australis and Helianthus annuus in Chromium Phytoextraction

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A comparison of chromium abatement from irrigation water, by the use of two selected plant species, Phragmites australis and Helianthus annuus, planted in chromium-contaminated soil, was studied in the present work. The above plant species were irrigated, in a continuous mode, with 10 mg CrVI/L contaminated tap water. More than 90 % of hexavalent chromium was reduced to trivalent chromium, from both plant species, as measured in the drainage water. Moreover, total chromium removal ranged from 54 % (Phragmites) to 70 % (Helianthus). After 90 days, the total chromium content of the contaminated soil dropped from 70 to 32 and 34 mg Cr/kgdry soil, for Helianthus and Phragmites, respectively. Helianthus accumulated higher amount of chromium in the roots (2,730 mg Cr/kgdry tissue) as compared to 1,800 mg Cr/kgdry tissue for Phragmites. Most of CrVI was reduced to CrIII in all plant tissues, with Phragmites showing lower affinity for CrVI reduction in the root tissues but higher chromium translocation potential from roots to stems, while Helianthus showed higher chromium translocation from roots to leaves. Toxicity effects, expressed as root growth rate inhibition, indicated that Phragmites were the most tolerant specie to chromium effects. Both plant species showed high potentialities to be used in phytoremediation installations for chromium removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA. (2005). Standard methods for examination of water and wastewater (21st ed.). Washington, DC: APHA.

    Google Scholar 

  • Barceló, J., & Poschenrieder, C. (2003). Phytoremediation: principles and perspectives. Science, 2(3), 333–344.

    Google Scholar 

  • Barcelo, J., Poschenrieder, C., & Gunse, B. (1986). Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv Contender) under both normal and water stress conditions. Journal of Experimental Botany, 37, 178–187.

    Article  CAS  Google Scholar 

  • Bartlett, R., & James, B. (1979). Behavior of chromium in soils: III. Oxidation. Journal of Environmental Quality, 8, 31–35.

    Article  CAS  Google Scholar 

  • Bartlett, R. J., & Kimble, J. M. (1976). Behavior of chromium in soils: I. Trivalent forms. Journal of Environmental Quality, 5, 379–383.

    Article  CAS  Google Scholar 

  • Bragato, C., Brix, H., & Malagoli, M. (2006). Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environmental Pollution, 144(3), 967–975.

    Article  CAS  Google Scholar 

  • Bragato, C., Schiavon, M., Polese, P., Ertani, A., Pittarello, M., & Malagoli, M. (2009). Seasonal variations of Cu, Zn, Ni and Cr concentration in Phragmites australis (Cav.). Trin ex steudel in a constructed wetland of North Italy. Desalination, 246, 35–44.

    Article  CAS  Google Scholar 

  • Cary, E. E., Allaway, W. H., & Olson, O. E. (1977). Control of chromium concentrations in food plants. 1. Absorption and translocation of chromium by plants. Journal of Agricultural and Food Chemistry, 25(2), 300–304.

    Article  CAS  Google Scholar 

  • Cervantes, C., Garcia, J. C., Devars, S., Corona, F. G., Tavera, H. L., Torres-guzman, J. C., et al. (2001). Interactions of chromium with micro-organisms and plants. FEMS Microbiology Reviews, 25, 335–347.

    Article  CAS  Google Scholar 

  • Chen, H., & Cutrigh, T. (2001). EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45, 21–28.

    Article  CAS  Google Scholar 

  • Dheeba, B., & Sampathkumar, P. (2012). A comparative study on the phytoextraction of five common plants against chromium toxicity. Oriental Journal of Chemistry, 28(2), 867–879.

    CAS  Google Scholar 

  • Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofiltration the use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology, 29, 1239–1245.

    Article  CAS  Google Scholar 

  • Fibbi, D., Doumett, S., Lepri, L., Checchini, L., Gonnelli, C., Coppini, E., et al. (2012). Distribution and mass balance of hexavalent and trivalent chromium in a subsurface, horizontal flow (SF-h) constructed wetland operating as post-treatment of textile wastewater for water reuse. Journal of Hazardous Materials, 199–200, 209–216.

    Article  Google Scholar 

  • Gallego, S., Benavides, M., & Tomaro, M. (2002). Involvement of an antioxidant defence system in the adaptive response to heavy metal ions in Helianthus annuus. L. cells. Plant Growth Regulation, 36, 267–273.

    Article  CAS  Google Scholar 

  • Gikas, P., & Romanos, P. (2006). Effects of tri-valent (Cr(III)) and hexa-valent (Cr(VI)) chromium on the growth of activated sludge. Journal of Hazardous Materials, 133B, 212–217.

    Article  Google Scholar 

  • Golovatyj, S.E., & Bogatyreva, E.N. (1999). Effect of levels of chromium content in a soil on its distribution in organs of corn plants. Soil Research and use of Fertilizers, 197–204.

  • Grubinger, V. P., Gutenmann, W. H., Doss, G. J., Rutzke, M., & Lisk, D. J. (1994). Chromium in Swiss chard grown on soil amended with tannery meal fertilizer. Chemosphere, 28(4), 717–720.

    Article  CAS  Google Scholar 

  • Gupta, K., Mehta, R., Kumar, N., & Dahiya, D. S. (2000). Effect of chromium(VI) on phosphorus fractions in developing sunflower seeds (Helianthus annuus L.). Crop Research, 20, 46–51.

    Google Scholar 

  • Hara, T., & Sonoda, Y. (1979). Comparison of the toxicity of heavy metals to cabbage growth. Plant and Soil, 51, 127–133.

    Article  CAS  Google Scholar 

  • Hong, K. J., Tokunaga, S., & Kajiuchi, T. (2002). Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere, 4, 379–387.

    Article  Google Scholar 

  • Huffman, E. W. D., Jr., & Allaway, H. W. (1973). Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. Journal of Agricultural and Food Chemistry, 21a, 982–986.

    Article  Google Scholar 

  • Jain, M., Garg, V. K., & Kadirvelu, K. (2010). Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. Journal of Environmental Management, 91, 949–957.

    Article  CAS  Google Scholar 

  • Jain, M., Garg, V. K., & Kadirvelu, K. (2011). Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology. Bioresource Technology, 102, 600–605.

    Article  CAS  Google Scholar 

  • James, B. R. (1996). The challenge of remediating chromium-contaminated soils. Environmental Science and Technology, 30, 248A–251A.

    Article  CAS  Google Scholar 

  • Jardine, P. M., Fendorf, S. E., Mayes, M. A., Larsen, I. L., Brooks, S. C., & Bailey, W. B. (1999). Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environmental Science and Technology, 33(17), 2939–2944.

    Article  CAS  Google Scholar 

  • Karpiscak, M. M., Whiteaker, L. R., Artiola, J. F., & Foster, K. E. (2001). Nutrient and heavy metal uptake and storage in constructed wetland systems in Arizona. Water Science and Technology, 44, 455–462.

    CAS  Google Scholar 

  • Malik, U. R., Hasany, S. M., & Subhani, M. S. (2005). Sorptive potential of sunflower stem for Cr (III) ions from aqueous solutions and its kinetic and thermodynamic profile. Talanta, 66, 166–173.

    Article  CAS  Google Scholar 

  • Melo, M. R., Flores, N. R., Murrieta, S. V., Tovar, A. R., Zúñiga, A. G., Hernández, O. F., et al. (2011). Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils. International journal of Environmental Science and Technology, 8(4), 807–816.

    CAS  Google Scholar 

  • Micera, G., & Dessi, A. (1988). Chromium adsorption by plant roots and formation of long-lived Cr(V) species: an ecological hazard? Journal of Inorganic Chemistry, 34, 157–166.

    CAS  Google Scholar 

  • Mortvedt, J. J., & Giordano, P. M. (1975). Response of corn to zinc and chromium in municipal wastes applied to soil. Journal of Environmental Quality, 4, 170–174.

    Article  CAS  Google Scholar 

  • Mukherji, S., & Roy, B. K. (1978). Characterization of chromium toxicity in different plant materials. Indian Journal of Experimental Biology, 16, 1017–1019.

    CAS  Google Scholar 

  • Paiva, H. N., de Carvalho, J. G., & Siqueria, J. O. (2000). Effect of Cd, Ni, Pb and Zn seedlings on Cedrela fissilis and Tabebuia impetiginosa (Mart.) standley in nutrient solution. Revista Arvore, 24, 369–378.

    Google Scholar 

  • Palmer, C. D., & Wittbrodt, P. R. (1991). Processes affecting the remediation of chromium-contaminated sites. Environmental Health Perspectives, 92, 25–40.

    Article  CAS  Google Scholar 

  • Peverly, J. H., Surface, J. M., & Wang, T. (1995). Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecological Engineering, 5, 21–35.

    Article  Google Scholar 

  • Prasad, M. N. V., & De Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3), 110–146.

    Article  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees a review. Environment International, 29, 529–540.

    Article  CAS  Google Scholar 

  • Ranieri, E. (2003). Hydraulics of subsurface flow constructed wetlands in semi arid climates conditions. Water Science and Technology, 47(7–8), 49–55.

    CAS  Google Scholar 

  • Ranieri, E. (2012). Chromium and nickel control in full and small scale subsuperficial flow constructed wetlands. Soil and Sediment Contamination. An International Journal, 21, 802–814. Taylor&Francis.

    Article  CAS  Google Scholar 

  • Ranieri, E., & Young, T. H. (2012). Clogging influence on metals migration and removal in sub-surface flow constructed wetlands. Journal of Contaminant Hydrology, 129–130, 38–45.

    Article  Google Scholar 

  • Ranieri, E., Verlicchi, P., & Young, T. M. (2011). Paracetamol removal in subsurface flow constructed wetlands. Journal of Hydrology, 404, 130–135.

    Article  Google Scholar 

  • Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 109, 427–433.

    Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1995). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  Google Scholar 

  • Schilling, E. E., & Heiser, H. C. B. (1981). Infragenic classification of Helianthus (Compositae). Taxonomy, 30, 393–403.

    Article  Google Scholar 

  • Shahandeh, H., & Hossner, L. R. (2000). Plant screening for chromium phytoremediation. International Journal of Phytoremediation, 2(1), 31–51.

    Article  CAS  Google Scholar 

  • Shanker, A. K., Djanaguiraman, M., Sudhagar, R., Chandrashekar, C. N., & Pathmanabhan, G. (2004). Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L) R Wilczek, cv CO4) roots. Plant Science, 166a, 1035–1043.

    Article  Google Scholar 

  • Shanker, A. K., Cervantes, C., Loza-Taverac, H., & Avudainayagamd, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753.

    Article  CAS  Google Scholar 

  • Shewry, P. R., & Peterson, P. J. (1974). The uptake of chromium by barley seedlings (Hordeum vulgare L.). Journal of Experimental Botany, 25(87), 785–797.

    Article  CAS  Google Scholar 

  • Shu, W. S., Lan, C. Y., & Zhang, Z. Q. (1997). Analysis of major constraints on plant colonization at Fankou Pb/Zn mine tailing. Journal of Applied Ecology, 8, 314–318.

    CAS  Google Scholar 

  • Skeffington, R. A., Shewry, P. R., & Petersen, P. J. (1976). Chromium uptake and transport in barley seedlings Hordeum vulgare. Planta, 132, 209–214.

    Article  CAS  Google Scholar 

  • Soane, B. D., & Saunder, D. H. (1959). Nickel and chromium toxicity of serpentine soils in Southern Rhodesia. Soil Science, 88, 322–330.

    Article  CAS  Google Scholar 

  • SPS. (2002). Quality control material, SPS-WW2, wastewater level 2, batch no. 584 106. Oslo: Spectrapure Standards AS.

    Google Scholar 

  • Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47, 271–280.

    Article  CAS  Google Scholar 

  • Turner, M. A., & Rust, R. H. (1971). Effects of chromium on growth and mineral nutrition of soybeans. Soil Science Society of America Proceedings, 35, 755–758.

    Article  CAS  Google Scholar 

  • US EPA (1998). Toxicological Review of Hexavalent Chromium. CAS. No. 18540-29-9. Washington DC.

  • Vaiopoulou, E., & Gikas, P. (2012). Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review. Water Research, 46, 549–570.

    Article  CAS  Google Scholar 

  • Van Nevel, L., Mertens, J., Oorts, K., & Verheyen, K. (2007). Phytoextraction of metals from soils: how far from practice. Environmental Pollution, 150(1), 34–40.

    Article  Google Scholar 

  • Vazquez, M. D., Poschenrieder, C. H., & Bacelo, J. (1987). Chromium(VI) induced structural and ultrastructural changes in bust bean plants (Phaseolus vulgaris L.). Annals of Botany, 59, 427–438.

    CAS  Google Scholar 

  • Verlicchi, P., Ranieri, E., & Galletti, A. (2010). Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: contribution of vegetation and filling medium. Science of the Total Environment, 408, 5097–5105.

    Article  Google Scholar 

  • Vervaeke, P., Luyssaert, S., Mertens, J., Meers, E., Tack, F. M. G., & Lust, N. (2003). Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environmental Pollution, 126, 275–282.

    Article  CAS  Google Scholar 

  • Westall, J.C., Zachary, J.L., & Morel, F.M.M. (1990). A computer program for the calculation of chemical equilibrium composition of aqueous systems. Dept. Civil Eng. Massachusetts Institute of Technology.

  • Windham, L., Weis, J. B., & Weis, P. (2003). Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science, 56, 63–72.

    Article  CAS  Google Scholar 

  • Wolf, B. (1982). A comprehensive system of leaf analysis and its use for diagnosing top nutrient status. Communication in Soil and Plant Analysis, 13, 1035–1059.

    Article  CAS  Google Scholar 

  • Xu, S., & Jaffé, P. R. (2006). Effects of plants on the removal of hexavalent chromium in wetland sediments. Journal of Environmental Quality, 35(1), 334–341.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research was financed by PRIN, Progetto di Ricerca di Interesse Nazionale, Framework of the Italian Ministero dell’Università. Special thanks go to Prof. Thomas M. Young and the University California Davis (USA) laboratory staff for the replicated tests and laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Ranieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranieri, E., Fratino, U., Petruzzelli, D. et al. A Comparison Between Phragmites australis and Helianthus annuus in Chromium Phytoextraction. Water Air Soil Pollut 224, 1465 (2013). https://doi.org/10.1007/s11270-013-1465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1465-9

Keywords

Navigation