Skip to main content
Log in

Prediction of Vertical DNAPL Vapour Fluxes in Soils Using Quasi-Analytical Approaches: Bias Related to Density-Driven and Pressure-Gradient-Induced Advection

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study focuses on a detailed analysis of the errors introduced by two quasi-analytical approaches based on either Fick’s first law or a combination of Fick’s and Darcy’s laws to evaluate the vapour flux of chlorinated solvents from a source zone located in the unsaturated zone towards the atmosphere. A coupled one-dimensional numerical flow and transport model was developed and applied to three case studies characterised by different water content profiles in the vadose zone and under different levels of maximum dense nonaqueous-phase liquid vapour concentrations and vapour pressure conditions of the source zone. The steady-state concentration and pressure profiles obtained were then used in the two quasi-analytical approaches to estimate the flux towards the atmosphere. When mass fluxes due to density-driven advection become dominant and the vertical advective mass fluxes are increased due to strong pressure gradients in the soil air, the error was observed to increase when using the pure diffusion approach in the quantification of the surface flux calculated by the numerical model with increasing dimensionless Rayleigh numbers. Without taking into account the advective transport in the approach, the relative error calculated with only Fick’s law overestimates the real vapour flux when density-driven advection is dominant and underestimates it when pressure-gradient-driven advection dominates. The more advanced advective–diffusive quasi-analytical approach fits reasonably well with the numerically obtained mass fluxes except near soil layer discontinuities, where the evaluation of both the concentration gradient and pressure gradient in the porous media as well as the determination of the average effective diffusion coefficients are rendered more difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Altevogt, A. S., Rolston, D. E., & Venterea, R. T. (2003). Density and pressure effects on the transport of gas phase chemicals in unsaturated porous media. Water Resources Research, 39(3), 1061.

    Article  Google Scholar 

  • Barber, C., Davis, G. B., Briegel, D., & Ward, J. K. (1990). Factors controlling the concentration of methane and other volatiles in groundwater and soil gas around a waste site. Journal of Contaminant Hydrology, 5, 155–169.

    Article  CAS  Google Scholar 

  • Bear, J. (1972). Dynamics of fluids in porous media. New York: Elsevier.

    Google Scholar 

  • Benremita, H. (2002). Approche expérimentale et simulation numérique du transfert de solvants chlorés en aquifère alluvial contrôlé. Thèse de doctorat, Université Louis Pasteur, Strasbourg. France

  • Benremita, H., & Schäfer, G. (2003). Quantification du transfert de trichloroéthylène en milieu poreux à partir d’un panache de vapeurs vers la nappe d’eau souterraine. C.R. Mécanique, 331(12), 835–842.

    Article  CAS  Google Scholar 

  • Bettahar, B., Ducreux, J., Schäfer, G., & Van Dorpe, V. (1999). Surfactant enhanced in situ remediation of LNAPL contaminated aquifers: large scale studies on a controlled experimental site. Transport in Porous Media, 37, 276–286.

    Article  Google Scholar 

  • Birovljev, A., Furuberg, L., Feder, J., Jøssang, T., Måløy, K. J., & Aharony, A. (1991). Gravity invasion percolation in 2 dimensions-experiment and simulation. Physical Review Letters, 5, 584–587.

    Article  Google Scholar 

  • Bohy, M., Schäfer, G., & Razakarisoa, O. (2004). Caractérisation de zones sources de DNAPL à l’aide de traceurs bisolubles: mise en évidence d’une cinétique de partage. C.R. Géoscience, 336, 799–806.

    Article  Google Scholar 

  • Bohy, M., Dridi, L., Schäfer, G., & Razakarisoa, O. (2006). Transport of mixture of chlorinated solvent vapours in the vadoses zone of a sandy aquifer. Vadose Zone Journal, 5, 539–553.

    Article  CAS  Google Scholar 

  • Choi, J. W., Tillman, F. D., & Smith, J. A. (2002). Relative importance of gas phase diffusive and advective trichloroethylene fluxes in the unsaturated zone under natural conditions. Environmental Science and Technology, 36, 3157–3164.

    Article  CAS  Google Scholar 

  • Coppola, A., Kutilek, M., & Frind, E. O. (2009). Transport in preferential flow domains of the soil porous system: measurement, interpretation, modelling and upscaling. Journal of Contaminant Hydrology, 104, 1–3.

    Article  CAS  Google Scholar 

  • Cotel, S. (2008). Etude des transferts sol/nappe/atmosphère/bâtiments; application aux sols pollués par des Composés Organiques Volatils. Ph.D. thesis, University of Joseph Fourier, Grenoble, France

  • Cotel, S., Schäfer, G., Barthes, V., & Baussand, P. (2011). Effect of density-driven advection on trichloroethylene vapour diffusion in a porous medium. Vadose zone Journal, 10, 565–581.

    Article  CAS  Google Scholar 

  • Direction Régionale de Santé Publique (DRSP). (2007). Etude sur l’intrusion potentielle de vapeurs de trichloréthylène dans l’air intérieur des bâtiments du secteur Valcartier, Québec. http://www.dspq.qc.ca/documents/1_021007_AVIS_TCE_000.pdf. Accessed May 2009.

  • Dridi, L., & Schäfer, G. (2006). Quantification du flux de vapeurs de solvants chlorés depuis une source en aquifère poreux vers l’atmosphère: biais relatifs à la non uniformité de la teneur en eau et à la non stationnarité du transfert. C. R. Mecanique, 334, 611–620.

    Article  CAS  Google Scholar 

  • Dridi, L., Pollet, I., Razakarisoa, O., & Schäfer, G. (2009). Characterisation of a DNAPL source zone in a porous aquifer using the partitioning interwell tracer test and an inverse modelling approach. Journal of Contaminant Hydrology, 107, 22–44. doi:0.1016/j.jconhyd.2009.03.003.

    Article  CAS  Google Scholar 

  • Falta, R. W., Javandel, I., Pruess, K., & Witherspoon, P. A. (1989). Density-driven flow of gas in the unsaturated zone due to the evaporation of volatile organic compounds. Water Resources Research, 25, 2159–2169.

    Article  CAS  Google Scholar 

  • Fayers, F. J., & Zhou, D. (1996). On the importance of gravity and three-phase flow in gas displacement processes. Journal of Petroleum Science and Engineering, 15, 321–341.

    Article  CAS  Google Scholar 

  • Grathwohl, P. (1998). Diffusion in natural porous media: contaminant transport, sorption/desorption and dissolution kinetics. Dordrecht: Kluwer Academy Publication.

    Book  Google Scholar 

  • Hodgson, A. T., Garbesi, K., Sextro, R. G., & Daisy, J. M. (1992). Soil-gas contamination and entry of volatile organic compounds into a house near a landfill. Journal of the Air and Waste Management Association, 42, 277–283.

    Article  CAS  Google Scholar 

  • Jang, W. Y., & Aral, M. M. (2007). Density-driven transport of volatile organic compounds and its impact on contaminated groundwater plume evolution. Transport in Porous Media, 67(3), 353–374.

    Article  CAS  Google Scholar 

  • Jellali, S., Benremita, H., Muntzer, P., Razakarisoa, O., & Schäfer, G. (2003). A large-scale experiment on mass transfer of trichloroethylene from the unsatured zone of a sandy aquifer to its interfaces. Journal of Contaminant Hydrology, 60, 31–53.

    Article  CAS  Google Scholar 

  • Jones, C. J., Hudson, B. C., McGugan, P. J., & Smith, A. J. (1978). The leaching of some halogenated organic compounds from domestic waste. Journal of Hazardous Materials, 2(3), 227–233.

    Article  CAS  Google Scholar 

  • Johnson, P. C., & Ettinger, R. A. (1991). Heuristic model for predicting the intrusion rate of contaminant vapours into buildings. Environmental Science and Technology, 25, 1445–1452.

    Article  CAS  Google Scholar 

  • Kram, M. L., Keller, A. A., Rossabi, J., & Everett, L. G. (2001). DNAPL characterization methods and approaches, part 1: performance comparisons. Ground Water Monitoring and Remediation, 21, 109–123.

    Article  CAS  Google Scholar 

  • Kueper, B. H., & Frind, E. O. (1989). An overview of immiscible fingering in porous media. Journal of Contaminant Hydrology, 2, 95–110.

    Article  Google Scholar 

  • Lenhard, R. J., Oostrom, M., Simmons, C. S., & White, M. D. (1995). Investigation of density-dependent gas advection of trichloroethylene: experiment and a model validation exercise. Journal of Contaminant Hydrology, 19, 47–67.

    Article  CAS  Google Scholar 

  • Lusczynski, N. J. (1960). Head and flow of ground water of variable density. Journal of Geophysical Research, 66, 4247–4256.

    Article  Google Scholar 

  • Mastrocicco, M., Colombani, N., & Petitta, M. (2011). Modelling the density contrast effect on a chlorinated hydrocarbon plume reaching the shore line. Water, Air, and Soil Pollution, 220(1–4), 387–398.

    Article  CAS  Google Scholar 

  • Mendoza, C. A., & Frind, E. O. (1990). Advective–dispersive transport of dense organic vapours in the unsaturated zone, 1, model development. Water Resources Research, 26, 379–387.

    CAS  Google Scholar 

  • Mendoza, C. A., & McArly, T. A. (1990). Modeling of groundwater contamination caused by organic solvents vapours. Ground Water, 28, 199–206.

    Article  CAS  Google Scholar 

  • Moldrup, P., Olesen, T., Rolston, D. E., & Yamaguchi, T. (1997). Modeling diffusion and reaction in soil: VII. Predicting gas and ion diffusivity in unsaturated and sieved soil. Soil Science, 162, 632–640.

    Article  CAS  Google Scholar 

  • Molins, S., Mayer, K. U., Amos, R. T., & Bekins, B. A. (2010). Vadose zone attenuation of organic compounds at a crude oil spill site interactions between biogeochemical reactions and multicomponent gas transport. Journal of Contaminant Hydrology, 112(1–4), 15–29.

    Article  CAS  Google Scholar 

  • Morrison, G., Zhao, P., & Kasthuri, L. (2006). Spatial considerations in the transport of pollutants to indoor surfaces. Atmospheric Environment, 40(20), 3677–3685.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., & Munoz, J. L. (1985). Geochemical thermodynamics. Menlo Park: The Benjamin/Cummings Publishing Co., Inc.

    Google Scholar 

  • Pankow, J. F., & Cherry, J. A. (1996). Dense chlorinated solvents and other DNAPLs in groundwater: history, behaviour and remediation. Ontario: Waterloo Press.

    Google Scholar 

  • Parker, J. C. (2003). Physical processes affecting natural depletion of volatile chemicals in soil and groundwater. Vadose Zone Journal, 2, 222–230.

    CAS  Google Scholar 

  • Perry, R. H., & Green, D. W. (1984). Perry’s chemical engineer’s handbook (p. 2336). New York: McGraw-Hill.

    Google Scholar 

  • Rivett, M. O., Wealthall, G. P., Dearden, R. A., & McAlary, T. A. (2011). Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. Journal of Contaminant Hydrology, 123, 130–156.

    Article  CAS  Google Scholar 

  • Schwille, F. (1988). Dense chlorinated solvents in porous and fractured media model experiments. Transcrit par Pankow J. F., English Language Edition. Chelsea: Lewis Publishers.

    Google Scholar 

  • Sililo, O. T. N., & Tellam, J. H. (2000). Fingering in unsaturated zone flow: a qualitative review with laboratory experiments on heterogeneous systems. Ground Water, 38(6), 864–871.

    Article  CAS  Google Scholar 

  • Sleep, B. E., & Sykes, J. F. (1989). Modeling the transport of volatile organics in variably saturated media. Water Resources Research, 25, 81–92.

    Article  CAS  Google Scholar 

  • Thiez, A., & Ducreux, J. (1994). A 3-D numerical model for analysing hydrocarbon migration into soils and aquifers. In Siriwardane & Zaman (Eds.), Computer methods and advances in geomechanics (pp. 1165–1170). Rotterdam: Balkema.

    Google Scholar 

  • Thomson, N. R., Sykes, J. F., & Van Vliet, D. (1997). A numerical investigation into factors affecting gas and aqueous phase plumes in the subsurface. Journal of Contaminant Hydrology, 28(1–2), 39–70.

    Article  CAS  Google Scholar 

  • Waitz, M. F. W., Freijer, J. I., Kreule, P., & Swartjes, F. A. (1996). The VOLASOIL risk assessment model based on CSOIL for soils contaminated with volatile compounds. RIVM report no. 715810014. Bilthoven: National Institute of Public Health and the Environment (RIVM).

    Google Scholar 

  • Wang, G., Reckhorn, S. B. F., & Grathwohl, P. (2003). Volatilization of VOC from multicomponent mixtures in unsaturated porous media. Vadose Zone Journal, 2, 692–701.

    CAS  Google Scholar 

  • Webb, S. W., & Pruess, K. (2003). The use of Fick’s law for modeling trace gas diffusion in porous media. Transport in Porous Media, 51, 327–341.

    Article  CAS  Google Scholar 

  • White, M. D., Oostrom, M., Rockhold, M. L., & Rosing, M. (2008). Scalable modeling of carbon tetrachloride migration at the Hanford Site using the STOMP simulator. Vadose Zone Journal, 7(2), 654–666.

    Article  Google Scholar 

  • Williams, G. M., Ward, R. S., & Noy, D. J. (1999). Dynamics of landfill gas migration in unconsolidated sands. Waste Management and Research, 17, 1–16.

    Google Scholar 

  • Yu, S., Unger, A. J. A., & Parker, B. (2009). Simulating the fate and transport of TCE from groundwater to indoor air. Journal of Contaminant Hydrology, 107, 140–161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Schäfer.

Appendices

Appendix A

The flow of soil air is given by the mass conservation equation, which contains mass flux divergence and variation of storage terms as a function of time:

$$ - \nabla \left( {\rho v} \right) = \frac{{\partial \left( {n\rho } \right)}}{{\partial t}} $$
(27)

where ρ (in kilogrammes per cubic metre) is the vapour density, v (in metres per second) is the Darcy’s velocity and n (−) the porosity of the porous media.

The storage term can be explained as follows:

$$ \frac{{\partial \left( {n\rho } \right)}}{{\partial t}} = n\frac{{\partial \rho }}{{\partial t}} + \rho \frac{{\partial n}}{{\partial t}} $$
(28)

Many assumptions are considered to express the flow equation. The first one is to assume that if the compressibility of the medium \( \frac{{\partial n}}{{\partial t}} \) is negligible compared with the gas compressibility\( \frac{{\partial \rho }}{{\partial t}} \), the storage term will be simplified and defined as follows:

$$ \frac{{\partial (n\rho )}}{{\partial t}} = n\frac{{\partial \rho }}{{\partial t}} $$
(29)

Introducing the ideal gas state equation \( \rho \left( {p,T} \right) = \frac{{pM}}{{RT}} \) into Eq. (29), the term of storage variation becomes equal to

$$ n\frac{\partial }{{\partial t}}\left( \rho \right) = \frac{{nM}}{{RT}}\frac{{\partial p}}{{\partial t}} $$
(30)

where M (in kilogrammes per mole) is the molecular weight of the gas, p (in Pascals) is the pressure, R (8.314 Pa m3 mol−1 K−1) is the universal ideal gas constant and T (in Kelvins) is the absolute temperature.

In the divergence term, the velocity of the TCE vapour v is given by Darcy’s law:

$$ v = - \frac{k}{\mu}\nabla \left( {\rho gz + p} \right) $$
(31)

where k (in square metres) is the gas permeability, g (in metres per square second) is the gravity acceleration, μ (in kilogrammes per metre per second) is the dynamic viscosity of the fluid and z (in metres) is the elevation. The left-hand side term of Eq. (30) can thus be rewritten as:

$$ - \nabla \left( {\rho v} \right) = - \nabla \left( { - \frac{{k\rho }}{\mu}\nabla \left( {\rho gz + p} \right)} \right) $$
(32)
$$ - \nabla \left( {\rho v} \right) = \nabla \left( {\frac{{k\rho }}{\mu }gz\nabla \left( \rho \right) + g\rho \nabla (z) + \nabla (p)} \right) $$
(33)
$$ = \nabla \left( {\frac{{k\rho }}{\mu }gz\nabla \rho } \right) + \nabla \left( {\frac{{k\rho }}{\mu }g\rho \nabla z} \right) + \nabla \left( {\frac{{k\rho }}{\mu}\nabla p} \right) $$
(34)

Assuming that variation of the vapour density ρ (p, T) with elevation z is negligible compared with the variation with pressure (p) or temperature (T), one can neglect the first term of Eq. (34). Using the ideal gas state equation, Eq. (30) takes the following developed form:

$$ - \nabla \left( {\rho v} \right) = \nabla \left( {\frac{{k{M^2}{p^2}}}{{\mu {R^2}{T^2}}}g} \right) + \nabla \left( {\frac{{kMp}}{{\mu RT}}\nabla p} \right) $$
(35)

M, g, R, T being constants, Eq. (35) can be rewritten:

$$ - \nabla \left( {\rho v} \right) = \frac{{{M^2}g}}{{\mu {R^2}{T^2}}}\nabla \left( {k{p^2}} \right) + \frac{M}{{\mu RT}}\nabla \left( {kp\nabla p} \right) $$
(36)

The term pp may be replaced by

$$ \left( {p\frac{{\partial p}}{{\partial z}}} \right) = \frac{1}{2}\left( {p\frac{{\partial p}}{{\partial z}} + p\frac{{\partial p}}{{\partial z}}} \right) = \frac{1}{2}\frac{{\partial \left( {p.p} \right)}}{{\partial z}} = \frac{1}{2}\frac{{\partial {p^2}}}{{\partial z}} $$
(37)

Using Eq. (37) in Eq. (36) leads to:

$$ - \nabla \left( {\rho v} \right) = \frac{{{M^2}g}}{{\mu {R^2}{T^2}}}\frac{\partial }{{\partial z}}\left( {k{p^2}} \right) + \frac{M}{{2\mu RT}}\frac{\partial }{{\partial z}}\left( {k\frac{{\partial {p^2}}}{{\partial z}}} \right) $$
(38)

Based on Eqs. (30) and (38), one can express the mass conservation equation (see Eq. 27) of 1D vertical gas flow in a porous medium based on pressure p:

$$ \frac{{nM}}{{RT}}\frac{{\partial p}}{{\partial t}} = \frac{{{M^2}g}}{{\mu {R^2}{T^2}}}\frac{\partial }{{\partial z}}\left( {k{p^2}} \right) + \frac{M}{{2\mu RT}}\frac{\partial }{{\partial z}}\left( {k\frac{{\partial {p^2}}}{{\partial z}}} \right) $$
(39)

To linearise Eq. (39), the term p 2 is replaced by p using the following expression:

$$ \frac{{\partial {p^2}}}{{\partial t}} = \frac{{\partial \left( {p.p} \right)}}{{\partial t}} = p.\frac{{\partial p}}{{\partial t}} + p\frac{{\partial p}}{{\partial t}} = 2p.\frac{{\partial p}}{{\partial t}} $$
(40)

Replacing \( \frac{{\partial p}}{{\partial t}} \) by \( \frac{{1\,\partial {p^2}}}{{2\;p\;\partial t}} \) in Eq. (39), one obtains

$$ \frac{{\partial {p^2}}}{{\partial t}} = 2\frac{{Mp}}{{n\mu RT}}g\frac{\partial }{{\partial z}}\left( {k{p^2}} \right) + \frac{p}{{n\mu }}\frac{\partial }{{\partial z}}\left( {k\frac{\partial }{{\partial z}}{p^2}} \right) $$
(41)

As soil gas may occupy only a part of the given pore volume, one must replace porosity n by the gas content θ g , leading to the following equation:

$$ \frac{{\partial {p^2}}}{{\partial t}} = \frac{{{p}}}{{\mu {\theta_{\mathrm{g}}}}}\frac{\partial }{{\partial z}}\left( {k\frac{{\partial {p^2}}}{{\partial z}}} \right) + 2\frac{{Mg{p}}}{{\mu RT{\theta_{\mathrm{g}}}}}\frac{\partial }{{\partial z}}\left( {k{p^2}} \right) $$
(42)

To simplify the notation of Eq. (42), one sets P = p 2 and finally obtains:

$$ \frac{{\partial P}}{{\partial t}} = \beta \frac{\partial }{{\partial z}}\left( {k\frac{{\partial P}}{{\partial z}}} \right) + 2\gamma \frac{\partial }{{\partial z}}\left( {kP} \right) $$
(43)

where \( \beta = \frac{{{P_0}}}{{\mu {\theta_{\mathrm{g}}}}},\gamma = \frac{{Mg{P_0}}}{{\mu RT{\theta_{\mathrm{g}}}}} \)and p 0 represents the initial pressure in the soil gas.

Appendix B

The integrals of the linearised flow equation (Eq. 8) are defined as follows:

$$ \int\limits_{{k - 1/2}}^{{k + 1/2}} {\frac{{\partial P}}{{\partial t}}} {\mathrm{d}}z = \int\limits_{{k - 1/2}}^{{k + 1/2}} {\beta \frac{\partial }{{\partial z}}} \left( {k\frac{{\partial P}}{{\partial z}}} \right){\mathrm{d}}z + \int\limits_{{k - 1/2}}^{{k + 1/2}} {2\gamma \frac{\partial }{{\partial z}}} \left( {kP} \right){\mathrm{d}}z $$
(44)

Using an implicit time scheme (discretisation at time t + 1), the integrals for cell k can be expressed as:

$$ P_{{k - 1}}^{{t + 1}}{\mathrm{GP}}(k) + P_k^{{t + 1}}{\mathrm{EP}}(k) + P_{{k + 1}}^{{t + 1}}FP(k) = P_k^t $$
(45)

where

$$ {\mathrm{EP}}(k) = \left[ {1 + {\beta^k}\frac{{\varDelta t}}{{\varDelta {z^2}}}{k^{{k - 1/2}}} + {\beta^k}\frac{{\varDelta t}}{{\varDelta {z^2}}}{k^{{k + 1/2}}} - {\gamma^k}\frac{{\varDelta t}}{{\varDelta z}}{k^{{k + 1/2}}} + {\gamma^k}\frac{{\varDelta t}}{{\varDelta z}}{k^{{k - 1/2}}}} \right] $$
(46)
$$ {\mathrm{FP}}(k) = \left[ { - {\beta^k}\frac{{\varDelta t}}{{\varDelta {z^2}}}{k^{{k + 1/2}}} - {\gamma^k}\frac{{\varDelta t}}{{\varDelta z}}{k^{{k + 1/2}}}} \right] $$
(47)
$$ {\mathrm{GP}}(k) = \left[ { - {\beta^k}\frac{{\varDelta t}}{{\varDelta {z^2}}}{k^{{k - 1/2}}} + {\gamma^k}\frac{{\varDelta t}}{{\varDelta z}}{k^{{k - 1/2}}}} \right] $$
(48)

GP(k) is the factor accounting for the mass flux in the upstream cell k − 1, EP(k) is a factor representing the mass flux in cell k and FP(k) is mass flux in the downstream cell k + 1.

Eq. (45) is given in matrix form as follows:

where

$$ {\text E}P(1) = \left[ {1 + 2{\beta^1}\frac{{\varDelta \tau }}{{\varDelta {\zeta^2}}}{\kappa^1} + {\beta^1}\frac{{\varDelta \tau }}{{\varDelta {\zeta^2}}}{\kappa^2} - {\gamma^1}\frac{{\varDelta \tau }}{{\varDelta \zeta }}{\kappa^2} + {\gamma^1}\frac{{\varDelta \tau }}{{\varDelta \zeta }}{\kappa^1}} \right] $$
(49)
$$ FP(1) = \left[ { - {\beta^1}\frac{{\varDelta t}}{{\varDelta {z^2}}}{k^2} - {\gamma^1}\frac{{\varDelta t}}{{\varDelta z}}{k^2}} \right] $$
(50)
$$ GP(1) = \left[ { - 2{\beta^1}\frac{{\varDelta t}}{{\varDelta {z^2}}}{k^1} + {\gamma^1}\frac{{\varDelta t}}{{\varDelta z}}{k^1}} \right] $$
(51)

and

$$ EP\left( {NCELL} \right) = \left[ {1 + {\beta^{{NCELL}}}\frac{{\varDelta t}}{{\varDelta {z^2}}}{k^{{NNODE - 1}}} + 2{\beta^{{NCELL}}}\frac{{\varDelta t}}{{\varDelta {z^2}}}{k^{{NNODE}}} - {\gamma^{{NCELL}}}\frac{{\varDelta t}}{{\varDelta z}}{k^{{NNODE}}} + {\gamma^{{NCELL}}}\frac{{\varDelta t}}{{\varDelta z}}{k^{{NNODE}}}} \right] $$
(52)
$$ GP\,\left( {NCELL} \right) = \left[ { - {\beta^{{NCELL}}}\frac{{\varDelta t}}{{\varDelta {z^2}}}{k^{\mathrm{NNODE}}} + {\gamma^{\mathrm{NCELL}}}\frac{{\varDelta t}}{{\varDelta z}}{k^{\mathrm{NNODE}}}} \right] $$
(53)

The same approach was used to numerically solve the transport equation (Eq. 10):

$$ \int\limits_{{k - 1/2}}^{{k + 1/2}} {\alpha \frac{{\partial C}}{{\partial t}}} {\mathrm{d}}z = \int\limits_{{k - 1/2}}^{{k + 1/2}} {\frac{\partial }{{\partial z}}\left[ {{D_{\mathrm{eg}}} + {\alpha_L}\left| v \right|} \right]} \frac{{\partial C}}{{\partial z}}{\mathrm{d}}z + \int\limits_{{k - 1/2}}^{{k + 1/2}} { - \frac{\partial }{{\partial z}}(vC} ){\mathrm{d}}z $$
(54)

Using an implicit time scheme, one obtains:

$$ C_{{k - 1}}^{{t + 1}}G(k) + C_k^{{t + 1}}E(k) + C_{{k + 1}}^{{t + 1}}F(k) = C_k^t $$
(55)

where

$$ G(k) = \left[ {\frac{{\left( {D_{\mathrm{eg}}^{{k - {{1} \left/ {2} \right.}}} + \alpha_L^k{v^{{k - {{1} \left/ {2} \right.}}}}} \right)\varDelta t}}{{{\alpha^k}\varDelta {z^2}}} - \frac{{{v^{{k - {{1} \left/ {2} \right.}}}}\varDelta t}}{{{\alpha^k}\varDelta z}}} \right] $$
(56)
$$ E(k) = \left[ {1 + \frac{{\left( {D_{\mathrm{eg}}^{{k - {{1} \left/ {2} \right.}}} + \alpha_L^k{v^{{k - {{1} \left/ {2} \right.}}}}} \right)\varDelta t}}{{{\alpha^k}\varDelta {z^2}}} + \frac{{\left( {D_{\mathrm{eg}}^{{k + {{1} \left/ {2} \right.}}} + \alpha_L^k{v^{{k + {{1} \left/ {2} \right.}}}}} \right)\varDelta t}}{{{\alpha^k}\varDelta {z^2}}} + \frac{{{u^{{k + {{1} \left/ {2} \right.}}}}\varDelta t}}{{{\alpha^k}\varDelta z}}} \right] $$
(57)
$$ F(k) = \left[ { - \frac{{\left( {D_{\mathrm{eg}}^{{k + {{1} \left/ {2} \right.}}} + \alpha_L^k{v^{{k + {{1} \left/ {2} \right.}}}}} \right)\varDelta t}}{{{\alpha^k}\varDelta {z^2}}}} \right] $$
(58)

Equation (56) can be written in matrix form as follows

Where

$$ G(1) = \left[ { - 2\frac{{\left( {D_{\mathrm{eg}}^1 + \alpha_L^1{\nu^1}} \right)\varDelta t}}{{{\alpha^1}\varDelta {z^2}}} - \frac{{{\nu^1}\varDelta t}}{{{\alpha^1}\varDelta {z^2}}}} \right] $$
(59)
$$ E(1) = \left[ {1 - 2\frac{{\left( {D_{\mathrm{eg}}^1 + \alpha_L^1{\nu^1}} \right)\varDelta t}}{{{\alpha^1}\varDelta {z^2}}} - \frac{{\left( {D_{\mathrm{eg}}^{2} + \alpha_L^1{\nu^2}} \right)\varDelta t}}{{{\alpha^1}\varDelta {z^2}}} + \frac{{{\nu^2}\varDelta t}}{{{\alpha^1}\varDelta {z^2}}}} \right] $$
(60)
$$ F(1) = \left[ {\frac{{\left( {D_{\mathrm{eg}}^{2} + \alpha_L^1{\nu^2}} \right)\varDelta t}}{{{\alpha^1}\varDelta {z^2}}}} \right] $$
(61)

and

$$ G\left( {\mathrm{NCELL}} \right) = \left[ {\frac{{\left( {D_{\mathrm{eg}}^{\mathrm{NNODE}} + \alpha_L^{\mathrm{NCELL}}{\nu^{\mathrm{NNODE}}}} \right)\varDelta t}}{{{\alpha^{\mathrm{NCELL}}}\varDelta {z^2}}} - \frac{{{\nu^{\mathrm{NNODE}}}\varDelta t}}{{{\alpha^{\mathrm{NCELL}}}\varDelta z}}} \right] $$
(62)
$$ E\left( {\mathrm{NCELL}} \right) = \left[ {1 - \frac{{\left( {D_{\mathrm{eg}}^{\mathrm{NNODE}} + \alpha_L^{\mathrm{NCELL}}{\nu^{\mathrm{NNODE}}}} \right)\varDelta t}}{{{\alpha^{\mathrm{NCELL}}}\varDelta {z^2}}} - 2\frac{{\left( {D_{\mathrm{eg}}^{{{\mathrm{NNODE}} + 1}} + \alpha_L^{\mathrm{NCELL}}{\nu^{{{\mathrm{NNODE}} + 1}}}} \right)\varDelta t}}{{{\alpha^{\mathrm{NCELL}}}\varDelta {z^2}}} + \frac{{{\nu^{{{\mathrm{NNODE}} + 1}}}\varDelta t}}{{{\alpha^{\mathrm{NCELL}}}\varDelta z}}} \right] $$
(63)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzougui, S., Schäfer, G. & Dridi, L. Prediction of Vertical DNAPL Vapour Fluxes in Soils Using Quasi-Analytical Approaches: Bias Related to Density-Driven and Pressure-Gradient-Induced Advection. Water Air Soil Pollut 223, 5817–5840 (2012). https://doi.org/10.1007/s11270-012-1319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1319-x

Keywords

Navigation