Skip to main content
Log in

Silicon Effects on Metal Tolerance and Structural Changes in Maize (Zea mays L.) Grown on a Cadmium and Zinc Enriched Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Silicon presents a close relationship with the amelioration of heavy metals phytotoxicity. However, mechanisms of Si-mediated alleviation of metal stress remains poorly understood. This work aimed at studying the relationship between the accumulation of Si, Cd, and Zn and the tolerance and structural alterations displayed by maize plants grown on a Cd and Zn enriched soil treated with doses of Si (0, 50, 100, 150, and 200mg kg−1) as calcium silicate (CaSiO3). The results showed that the maize plants treated with Si presented not only biomass increasing but also higher metal accumulation. Significant structural alterations on xylem diameter, mesophyll and epidermis thickness, and transversal area occupied by collenchyma and midvein were also observed as a result of Si application. The deposition of silica in the endodermis and pericycle of roots seems to play an important role on the maize tolerance to Cd and Zn stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barceló, J., & Poschenrieder, C. (1990). Plant water relations as effected by heavy metal stress: a review. Journal of Plant Nutrition, 13, 1–37.

    Article  Google Scholar 

  • Boudet, A. M. (2000). Lignins and lignification: Selected issues. Plant Physiology & Biochemistry, 38(1/2), 81–96.

    Article  CAS  Google Scholar 

  • Bukatsch, F. (1972). Bemerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos, 6, 255.

    Google Scholar 

  • Currie, H. A., & Perry, C. (2007). Silica in Plants: Biological, Biochemical and Chemical Studies. Ann Bot-London 1–7.

  • Dayanandan, P., Kaufman, P. B., & Franklin, C. I. (1983). Detection of sílica in plants. American Journal of Botany, 70(7), 1079–1084.

    Article  CAS  Google Scholar 

  • Ederli, L., Reale, L., Ferranti, F., et al. (2004). Responses induced by high concentration of cadmium in Phragmites australis roots. Physiologia Plantarum, 121, 66–74.

    Article  CAS  Google Scholar 

  • EMBRAPA-Centro Nacional de Pesquisa de Solos (1999). Manual de análise química dos solos, plantas e fertilizantes. Rio de Janeiro: Embrapa Solos.

    Google Scholar 

  • Epstein, E. (1994). The anomaly of silicon in plant biology. P Natl Acad Sci-Biol, 91(1), 11–17.

    Article  CAS  Google Scholar 

  • Epstein, E. (1999). Silicon. Annual Review of Plant Physiology, 50, 641–664.

    Article  CAS  Google Scholar 

  • Gong, H. J., Zhu, X. Y., Chen, K. M., et al. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169, 313–321.

    Article  CAS  Google Scholar 

  • Hossain, M. T., Mori, R., Wakabayashi, K. S. K., et al. (2002). Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. Journal of Plant Research, 115, 23–27.

    Article  CAS  Google Scholar 

  • Iwasaki, K., Maier, P., Fecht, M., et al. (2002). Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.)Walp.). Plant Soil, 238, 281–288.

    Article  CAS  Google Scholar 

  • Johansen, D. A. (1940). Plant microtechnique. New York: Mc Graw Hill.

    Google Scholar 

  • Kraus, J. E., & Arduin, M. (1997). Manual básico de métodos em morfologia vegetal. EDUR, Rio de Janeiro

  • Liang, Y., Sun, W., Zhu, Y-G., et al. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147, 422–428.

    Article  CAS  Google Scholar 

  • Liang, Y., Wong, J. W. C., & Wei, L. (2005). Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 58, 475–483.

    Article  CAS  Google Scholar 

  • Neumann, D., & Nieden, U. Z. (2001). Silicon and heavy metal tolerance of higher plant. Phytochemistry, 56, 685–692.

    Article  CAS  Google Scholar 

  • Raven, P. H., Evert, R. F., & Eichhorn, S. E. (1983). Biologia Vegetal. Rio de Janeiro: Guanabara Koogan.

    Google Scholar 

  • Rogalla, H., & Romheld, V. (2002). Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumic sativus L. Plant, Cell & Environment, 25, 549–555.

    Article  CAS  Google Scholar 

  • Rout, G. R., & Das, P. (2003). Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie, 23, 3–11.

    Article  Google Scholar 

  • SAS INSTITUTE (1999). Statistical analysis system: procedure guide for personal computer. Cary.

  • Schützendübel, A., Schwanz, P., Teichmann, T., et al. (2001). Cadmium-induced changes in antioxidative systems, H2O2 content and differentiation in pine (Pinus sylvestris) roots. Plant Physiology, 127, 887–892.

    Article  Google Scholar 

  • Seregin, I. V., & Ivanov, V. B. (1997). Histochemical investigation of cadmium and lead distribution in plants. Russian Journal of Plant Physiology, 44, 791–796.

    Google Scholar 

  • Seregin, I. V., & Ivanov, V. B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48(4), 606–630.

    Google Scholar 

  • Shi, X. H., Zhang, C. C., Wang, H., et al. (2005). Effect of Si on the distribution of Cd in rice seedlings. Plant Soil, 272, 53–60.

    Article  CAS  Google Scholar 

  • Strasburger, E. (1924). Handbook of Practical Botany. New York: MacMillan.

    Google Scholar 

  • Vitória, A. P., Rodriguez, A. P. M., & Cunha, M. (2004). Structural changes in radish seedlings (Raphanus sativus) exposed to cadmium. Biologia Plantarum, 47, 561–568.

    Article  Google Scholar 

  • Vollenweider, P., Cosio, C., & Gunthardt-Goerg, M. S. (2005). Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) Part II Microlocalization and cellular effects of cadmium. Environmental and Experimental Botany, 1–16

  • Wilcox, D. B., Dove, D., & Mcdavid, D. (2002). Greer Image Tool. San Antonio, Texas: University of Texas Health Science Center.

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to Dra. Rejane Pimentel for her aid on microscopical analysis and to CNPq for a doctoral scholarship to the senior author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clístenes Williams Araújo do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Cunha, K.P.V., do Nascimento, C.W.A. Silicon Effects on Metal Tolerance and Structural Changes in Maize (Zea mays L.) Grown on a Cadmium and Zinc Enriched Soil. Water Air Soil Pollut 197, 323–330 (2009). https://doi.org/10.1007/s11270-008-9814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9814-9

Keywords

Navigation