Skip to main content
Log in

Characterisation of the green turtle’s leukocyte subpopulations by flow cytometry and evaluation of their phagocytic activity

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Phagocytosis is a fundamental aspect of innate immunity that is conserved across many species making it a potentially useful health-assessment tool for wildlife. In non-mammalian vertebrates, heterophils, monocytes, macrophages, melanomacrophages, and thrombocytes all have phagocytic properties. Recently, B lymphocytes from fish, amphibians, and aquatic turtles have also showed phagocytic capacity. Phagocytes can be studied by flow cytometry; however, the use of this tool is complicated in reptiles partly because nucleated erythrocytes complicate the procedure. We separated green turtle leukocytes by density gradient centrifugation and identified subpopulations by flow cytometry and confocal microscopy. Additionally, we assessed their ability to phagocytize Fluorspheres and Ovoalbumin-Alexa. We found that heterophils and lymphocytes but not monocytes could be easily identified by flow cytometry. While heterophils from adults and juvenile turtles were equally able to phagocytize fluorspheres, adults had significantly more phagocytic ability for OVA-Alexa. Lymphocytes had a mild phagocytic activity with fluorospheres (27–38 %; 39–45 %) and OVA-Alexa (35–46 %; 14–22 %) in juvenile and adult green turtles, respectively. Confocal microscopy confirmed phagocytosis of fluorospheres in both heterophils and lymphocytes. This provides the first evidence that green turtle lymphocytes have phagocytic activity and that this assay could potentially be useful to measure one aspect of innate immunity in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Burgdorf S, Kautz A, Böhnert V, Knolle PA, Kurts C (2007) Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316:612–616

    Article  CAS  PubMed  Google Scholar 

  • Christin MS, Ménard L, Giroux I, Marcogliese DJ, Ruby S, Cyr D, Fournier M, Brousseau P (2013) Effects of agricultural pesticides on the health of Rana pipiens frogs sampled from the field. Environ Sci Pollut Res Int 20:601–611

    Article  CAS  PubMed  Google Scholar 

  • Dean P, Potter U, Richards EH, Edwards JP, Charnley AK, Reynolds SE (2004) Hyperphagocytic haemocytes in Manduca sexta. J Insect Physiol 50:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Desjardins M, Houde M, Gagnon E (2005) Phagocytosis: the convoluted way from nutrition to adaptive immunity. Immunol Rev 207:158–165

    Article  CAS  PubMed  Google Scholar 

  • Dubielecka PM, Cui P, Xiong X, Hossain S, Heck S, Angelov L, Kotula L (2010) Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms. PLoS ONE 10:e10430

    Article  Google Scholar 

  • Flannagan RS, Jaumouillé V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98

    Article  CAS  PubMed  Google Scholar 

  • Foley AM, Schroeder BA, Redlow AE, Fick-Child KJ, Teas WG (2005) Fibropapillomatosis in stranded green turtles (Chelonia mydas) from the eastern United States (1980–98): trends and associations with environmental factors. J Wildl Dis 41:29–41

    Article  PubMed  Google Scholar 

  • Glazebrook JS, Campbell RSF (1990) A survey of the diseases of marine turtles in northern Australia. I. Farmed turtles. Dis Aquat Org 9:83–95

    Article  Google Scholar 

  • Haugland GT, Jakobsen RA, Vestvik N, Ulven K, Stokka L, Wergeland H (2012) Phagocytosis and respiratory burst activity in lumpsucker (Cyclopterus lumpus L.) leucocytes analysed by flow cytometry. PLoS 7:e47909

    Article  CAS  Google Scholar 

  • Johnson JC, Schwiesow T, Ekwall AK, Christiansen JL (1999) Reptilian melanomacrophages function under conditions of hypothermia: observations on phagocytic behavior. Pigment Cell Res 12:376–382

    Article  CAS  PubMed  Google Scholar 

  • Johnson EH, Al-Habsi K, Al-Busaidy R (2010) Comparative chemiluminescence of neonatal and adult ovine polymorphonuclear leukocytes. Vet Immunol Immunopathol 134:265–268

    Article  CAS  PubMed  Google Scholar 

  • Kogut MH, He H, Genovese KJ (2012) Bacterial toll-like receptor agonists induce sequential NF-_B-mediated leukotriene B4 and prostaglandin E2 production in chicken heterophils. Vet Immunol Immunopathol 145:159–170

    Article  CAS  PubMed  Google Scholar 

  • Lehmann AK, Steinar S, Halstensen A (2000) Phagocytosis: measurement by flow cytometry. J Immunol Methods 243:229–242

    Article  CAS  PubMed  Google Scholar 

  • Li J, Barreda DR, Zhang YA, Boshra H, Gelman AE (2006) B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat Immunol 7:1116–1124

    Article  CAS  PubMed  Google Scholar 

  • Luckner-Minden C, Fischer I, Langhans C, Schiller M, Kropf P, Müller I, Hohlfeld JM, Ho AD, Munder M (2010) Human eosinophil granulocytes do not express the enzyme arginase. J Leukoc Biol 87:1125–1132

    Article  CAS  PubMed  Google Scholar 

  • Marks DJB, Rahman FZ, Sewell GW, Segal AW (2010) Crohn’s disease: an immune deficiency state. Clin Rev Allergy Immunol 38:20–31

    Article  CAS  PubMed  Google Scholar 

  • Milleta S, Bennetta J, Leeb KA, Haub M, Klasinga KC (2007) Quantifying and comparing constitutive immunity across avian species. Dev Comp Immunol 31:188–201

    Article  Google Scholar 

  • Mills JN, Wilcox GE (1993) Separation of phagocytic leukocytes from the peripheral blood of chickens. Avian Pathol 22:343–352

    Article  CAS  PubMed  Google Scholar 

  • Montilla AJF, Hernández JLR, Alvarado MCA (2006) Valores Hematológicos de la Tortuga Verde (Chelonia mydas) presente en la Alta Guajira. Rev Cient (Maracaibo) 16:219–226

    Google Scholar 

  • Muñoz FA, Estrada-Parra S, Romero-Rojas A, Work TM, Gonzalez-Ballesteros E, Estrada-Garcia I (2009) Identification of CD3+ T lymphocytes in the green turtle Chelonia mydas. Vet Immunol Immunopathol 131:211–217

    Article  PubMed  Google Scholar 

  • Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    Article  CAS  PubMed  Google Scholar 

  • Rieger AM, Konowalchuk JD, Grayfer L, Katzenback BA, Havixbeck JJ, Kiemele MD, Belosevic M, Barreda DR (2012) Fish and mammalian phagocytes differentially regulate pro-inflammatory and homeostatic responses in vivo. PLoS 7:e47070

    Article  CAS  Google Scholar 

  • Rossi S, Sá-Rocha VM, Kinoshita D, Genoy-Puerto A, Zwarg T, Werneck MR, Sá-Rocha LC, Matushima ER (2009) Flow cytometry as a tool in the evaluation of blood leukocyte function in Chelonia mydas (Linnaeus, 1758) (Testudines, Cheloniidae). Braz J Biol 69:899–905

    Article  CAS  PubMed  Google Scholar 

  • Salakij C, Salakij J, Apibal S, Narkkong N, Chanhome L, Rochanapat N (2002) Hematology, morphology, cytochemical staining, and ultrastructural characteristics of blood cells in king cobras (Ophiophagus hannah). Vet Clin Pathol 31:116–126

    Article  PubMed  Google Scholar 

  • Singh A, Singh R (2012) Day night variation in phagocytosis and superoxide production by leucocytes in freshwater snake, natrix piscator. Bioscan 7:383–386

    CAS  Google Scholar 

  • Tucunduva M, Borrelli P, Silva JR (2001) Experimental study of induced inflammation in the Brazilian Boa (Boa constrictor constrictor). J Comp Pathol 125:174–181

    Article  CAS  PubMed  Google Scholar 

  • Valle A, Maugeri N, Manfredi AA, Battaglia M (2012) Standardization in flow cytometry: correct sample handling as a priority. Nat Rev Immunol 12:864–864

    Article  CAS  PubMed  Google Scholar 

  • Work TM, Raskin RE, Balaz GH, Whittaker SD (1998) Morphologic and cytochemical characteristics of blood cells from Hawaiian green turtles. Am J Vet Res 59:1252–1257

    CAS  PubMed  Google Scholar 

  • Work TM, Balazs GH, Wolcott M, Morris R (2003) Bacteraemia in free-ranging Hawaiian green turtles Chelonia mydas with fibropapillomatosis. Dis Aquat Org 53:41–46

    Article  PubMed  Google Scholar 

  • Zhou Z, Wang Z, Cao L, Hu S, Zhang Z, Qin B, Guo Z, Nie K (2013) Upregulation of chicken TLR4, TLR15 and MyD88 in heterophils and monocyte-derived macrophages stimulated with Eimeria tenella in vitro. Exp Parasitol 133:427–433

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman LM, Vogel LA, Edwards KA, Bowden RM (2009) Phagocytic B cells in a reptile. Biol Lett 6:270–273

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the Sea Turtle Department of Xcaret Park, especially Rodolfo Raigoza and Rafael Valdéz, Juana Calderón of Laboratorio 15, Department of Cellular Biology, CINVESTAV-IPN. Financial support for this study came from Laboratorio 15, Department of Cellular biology, CINVESTAV-IPN.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Muñoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, F.A., Franco-Noguez, S.Y., Gonzalez-Ballesteros, E. et al. Characterisation of the green turtle’s leukocyte subpopulations by flow cytometry and evaluation of their phagocytic activity. Vet Res Commun 38, 123–128 (2014). https://doi.org/10.1007/s11259-014-9595-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-014-9595-0

Keywords

Navigation