Skip to main content

Advertisement

Log in

Renal senescence in 2008: progress and challenges

  • Nephrology-Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Kidneys are significantly affected by profound anatomic and functional changes with senescence. These changes lead to decline in glomerular filtration rate, decreased urinary concentrating and diluting ability, diminished urinary acidification, and impaired potassium clearance, to list a few. Such changes make the elderly prone to drug toxicity and serious fluid and electrolyte imbalance. While the entire mystery of aging is far from being clear, the role of oxidative stress, telomere length, Klotho gene expression, and the renin angiotensin system seem to be the key mechanisms involved in aging. Aging, being a complex process, involves an array of intertwined molecular pathways. Simultaneous study of multiple molecular pathways in parallel could provide invaluable information in understanding the clinical course of kidney aging and elucidating mechanisms that play key roles in the aging process. A better understanding of these mechanisms may help to preserve renal function, improve morbidity and mortality, and hopefully reduce healthcare costs for the aging population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. US Census Bureau. International database. Table 094. Midyear population, by age and sex. Available at http://www.census.gov/population/www/projections/natdet-D1A.html

  2. Zhen JH, Li L, Zhou XJ (2008) The aging kidney and associated diseases. In: Li LS, Liu ZH (eds) Nephrology in China (in press)

  3. Levit K, Smith C, Cowan C et al (2003) Trends in US health care spending, 2001. Health Aff 22:154–164

    Google Scholar 

  4. United States Renal Data System (2007) Annual data report. Bethesda, MD

    Google Scholar 

  5. Silva FG (2005) The aging kidney: a review—part I. Int Urol Nephrol 37:185–205

    PubMed  Google Scholar 

  6. Silva FG (2005) The aging kidney: a review—part II. Int Urol Nephrol 37:419–432

    PubMed  Google Scholar 

  7. Zhou XJ, Rakheja D, Yu XQ, Saxena R, Vaziri ND et al (2008) The aging kidney. Kidney Int (in press)

  8. Gourtsoyiannis N, Prassopoulos P, Cavouras D et al (1990) The thickness of the renal parenchyma decreases with age: a CT study of 360 patients. Am J Roentgenol 155:541–544

    CAS  Google Scholar 

  9. McLachlan M, Wasserman P (1981) Changes in sizes and distensibility of the aging kidney. Br J Radiol 54:488–491

    PubMed  CAS  Google Scholar 

  10. Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232(2):194–201

    PubMed  CAS  Google Scholar 

  11. Hughson M, Farris AB 3rd, Douglas-Denton R et al (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63(6):2113–2122

    PubMed  Google Scholar 

  12. Newbold KM, Sandison A et al (1992) Comparison of size of juxtamedullary and outer cortical glomeruli in normal adult kidney. Virchows Arch A Pathol Anat Histopathol 420(2):127–129

    PubMed  CAS  Google Scholar 

  13. Hughson MD, Douglas-Denton R et al (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69(4):671–678

    PubMed  CAS  Google Scholar 

  14. Kasiske BL (1987) Relationship between vascular disease and age-associated changes in the human kidney. Kidney Int 31:1153–1159

    PubMed  CAS  Google Scholar 

  15. Smith SM, Hoy WE et al (1989) Low incidence of glomerulosclerosis in normal kidneys. Arch Pathol Lab Med 113(11):1253–1255

    PubMed  CAS  Google Scholar 

  16. Kaplan C, Pasternack B, Shah H et al (1995) Age-related incidence of sclerotic glomeruli in human kidneys. Am J Pathol 80:227–234

    Google Scholar 

  17. Brenner BM (1983) Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int 23(4):647–655

    PubMed  CAS  Google Scholar 

  18. Hill GS, Heudes D et al (2003) Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation. Kidney Int 63(3):1027–1036

    PubMed  Google Scholar 

  19. Samuel T, Hoy WE et al (2005) Determinants of glomerular volume in different cortical zones of the human kidney. J Am Soc Nephrol 16(10):3102–3109

    PubMed  Google Scholar 

  20. Zhou XJ, Laszik ZG, Silva FG (2008)Anatomical changes in the aging kidney. In: Macias-Nunez JF, Cameron JS, Oreopoulos DG (eds) The aging kidney in health and disease. Springer, pp 39–54

  21. Baert L, Steg A (1977) Is the diverticulum of the distal and collecting tubules a preliminary stage of the simple cyst in the adult? J Urol 118(5):707–710

    PubMed  CAS  Google Scholar 

  22. Takazakura E, Sawabu N et al (1972) Intrarenal vascular changes with age and disease. Kidney Int 2(4):224–230

    PubMed  CAS  Google Scholar 

  23. Tracy RE, Ishii T (2000) What is ‘nephrosclerosis’? Lessons from the US, Japan, and Mexico. Nephrol Dial Transplant 15(9):1357–1366

    PubMed  CAS  Google Scholar 

  24. Tracy RE (2007) Age trends of renal arteriolar hyalinization explored with the aid of serial sections. Nephron Clin Pract 105(4):c171–c177

    PubMed  Google Scholar 

  25. Tracy RE, Newman WP 3rd, Wattigney WA et al (1995) Histologic features of atherosclerosis and hypertension from autopsies of young individuals in a defined geographic population: the Bogalusa Heart Study. Atherosclerosis 116(2):163–179

    PubMed  CAS  Google Scholar 

  26. Tracy RE, Parra D et al (2002) Influence of arteriolar hyalinization on arterial intimal fibroplasia in the renal cortex of subjects in the United States, Peru, and Bolivia, applicable also to other populations. Am J Hypertens 15(12):1064–1073

    PubMed  Google Scholar 

  27. Tracy RE (1998) Histologic characteristics of coronary artery in relation to the renovasculopathies of hypertension. Ann Diagn Pathol 2(3):159–166

    PubMed  CAS  Google Scholar 

  28. Fogo A, Breyer JA et al (1997) Accuracy of the diagnosis of hypertensive nephrosclerosis in African Americans: a report from the African American Study of Kidney Disease (AASK) Trial. AASK Pilot Study Investigators. Kidney Int 51(1):244–252

    PubMed  CAS  Google Scholar 

  29. Wesson LG Jr (1969) Renal hemodynamlcs in physiological states. In: Physiology of the human kidney. Grune & Stratton, New York, pp 96–108

  30. Hollenberg NK, Adams DF, Solomon HS et al (1974) Senescence and the renal vasculature in normal man. Circ Res 34:309–316

    PubMed  CAS  Google Scholar 

  31. Ljungqvist A, Lagergren C (1962) Normal intrarenal arterial pattern in adult and aging human kidney. J Anat 96:285–300

    PubMed  CAS  Google Scholar 

  32. Davidson AJ, Tamer LB, Downs WM (1969) A study of the angiographic appearance of the kidney In an aging normotensive population. Radiology 92:975–983

    PubMed  CAS  Google Scholar 

  33. McLachlan MS, Guthrie JC, Anderson CK et al (1977) Vascular and glomerular changes in the aging kidney. J Pathol 121:65–78

    PubMed  CAS  Google Scholar 

  34. Long DA, Mu W, Price KL et al (2005) Blood vessels and the aging kidney. Nephron Exp Nephrol 101:e95–e99

    PubMed  Google Scholar 

  35. Kang DH, Anderson S, Kim YG et al (2001) Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am J Kidney Dis 37:601–611

    PubMed  CAS  Google Scholar 

  36. Long DA, Price KL, Mu W et al (2004) Angiopoietin-1, a vascular growth factor with a potentially novel role in aging (abstract). J Am Soc Nephrol 15:477A

    Google Scholar 

  37. Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles, 5th edn. Hodder Arnold

  38. Virmani R, Avolio AP, Mergner WJ et al (1991) Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis. Am J Pathol 139:1119–1129

    PubMed  CAS  Google Scholar 

  39. Boutouyrie P, Laurent S, Benetos A et al (1992) Opposing effects of aging on distal and proximal large arteries of hypertensives. J Hypertens 10(suppl 6):S87–S91

    CAS  Google Scholar 

  40. Laurent S, Cockcroft J, van Bortel L et al (2006) European network for non-invasive investigation of large arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

    PubMed  Google Scholar 

  41. Donnan G, Yon R, Dewey H et al (1997) Important issues in stroke today. In: Hansson L, Birkenhager W (eds) Handbook of hypertension, vol 18. Elsevier, pp 268–81

  42. Bakris G (2005) Proteinuria: a link to understanding changes in vascular compliance? Hypertension 14:196–209

    Google Scholar 

  43. Verhave JC, Fesler P, du Cailar G et al (2005) Elevated pulse pressure is associated with low renal function in elderly patients with isolated systolic hypertension. Hypertension 45:586–591

    PubMed  CAS  Google Scholar 

  44. Lea J, Greene T, Hebert L et al (2005) The relationship between magnitude of proteinuria and reduction and risk of end-stage renal disease. Arch Intern Med 165:947–953

    PubMed  Google Scholar 

  45. O’Rourke MF (2007) Arterial aging: pathophygiological principles. Vasc Med 12:329–341

    PubMed  Google Scholar 

  46. Fisher CM (1982) Lacunar strokes and infarcts: a review. Neurology 32:871–876

    PubMed  CAS  Google Scholar 

  47. Cullen KM, Kocsi Z, Stone J (2005) Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J Cereb Blood Flow Metab 25:1656–1667

    PubMed  CAS  Google Scholar 

  48. Cullen KM, Kocsi Z, Stone J (2006) Microvascular pathology in the aging human brain: evident that senile plaques are sites of microhemorrhages. Neurobiol Aging 27:1786–1796

    PubMed  CAS  Google Scholar 

  49. Buee L, Hof PR, Delacourte A (1997) Brain microvascular changes in Alzheimer’s disease and other dementias. Ann N Y Acad Sci 826:7–24

    PubMed  CAS  Google Scholar 

  50. Willum-Hansen T, Staessen JA, Torp-Pederson C et al (2006) Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113:664–670

    PubMed  Google Scholar 

  51. Mattace-Raso FU, van der Cammen TJ, Hoffman A et al (2006) Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam study. Circulation 113:657–663

    PubMed  Google Scholar 

  52. Meaume S, Benetos A, Henry OF et al (2001) Aortic pulse wave velocity predicts cardiovascular mortality in subjects, 70 years of age. Arterioscler Thromb Vasc Biol 21:2046–2050

    PubMed  CAS  Google Scholar 

  53. Ibsen H, Olsen M, Wachtell K et al (2005) Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients. Hypertension 45:198–202

    PubMed  CAS  Google Scholar 

  54. Sarnak MJ, Greene T, Wang X et al (2005) The effect of a lower target blood pressure on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease study. Ann Intern Med 142:342–351

    PubMed  Google Scholar 

  55. Safar ME, London GM, Plante GE (2004) Arterial stiffness and kidney function. Hypertension 43:163–168

    PubMed  CAS  Google Scholar 

  56. Williams B, Lacy PS, Thom SM et al (2006) Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the conduit artery function evaluation (CAFE) study. Circulation 113:1213–1225

    PubMed  CAS  Google Scholar 

  57. Nichols W, O’Rourke M (2006) Principles of measurement, preventing and treating arterial stiffness In: Safar ME, O’Rourke MF (eds) Arterial stiffness, vol 23. Handbook of hypertension. Elsevier, pp 137–160, 503–516

  58. Morrissey PE, Yango AF (2006) Renal transplantation: older recipients and donors. Clin Geriatr Med 22(3):687–707

    PubMed  Google Scholar 

  59. Lindeman RD, Tobin J et al (1985) Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33(4):278–285

    PubMed  CAS  Google Scholar 

  60. Shannon JA, Smith HW (1935) The excretion of insulin, xylose and urea by normal and phlorizinized man. J Clin Invest 14:393–404

    PubMed  CAS  Google Scholar 

  61. Maher FT, Nolan NG, Elveback LR (1971) Comparison of simultaneous clearances of 125-I-labeled sodium iothalamate (Glofil) and of inulin. Mayo Clin Proc 46:690–691

    PubMed  CAS  Google Scholar 

  62. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31

    PubMed  CAS  Google Scholar 

  63. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461

    PubMed  CAS  Google Scholar 

  64. Wieczorowska-Tobis K, Niemir ZI et al (2006) Difference in estimated GFR with two different formulas in elderly individuals. Int Urol Nephrol 38:381–385

    PubMed  CAS  Google Scholar 

  65. Berman N, Hostetter TH (2007) Comparing the Cockcroft Gault and MDRD equations for calculation of GFR and drug doses in the elderly. Nat Clin Pract Nephrol 3:644–645

    PubMed  Google Scholar 

  66. Gill J, Malyuk R, Djurdjev O et al (2007) Use of GFR equations to adjust drug doses in an elderly multi-ethnic group— a cautionary tale. Nephrol Dial Transplant 22:2894–2899

    PubMed  Google Scholar 

  67. Ognibene A, Mannucci E et al (2006) Cystatin C reference values and aging. Clin Biochem 39(6):658–661

    PubMed  CAS  Google Scholar 

  68. Rowe JW, Shock NW, DeFronzo RA (1976) The influence of age on the renal response to water deprivation in man. Nephron 17:270–278

    PubMed  CAS  Google Scholar 

  69. Tian Y, Serino R, Verbalis JG (2004) Downregulation of renal vasopressin V2 receptor and aquaporin-2 expression parallels age associated defects in urine concentration. Am J Physiol Renal Physiol 287:F797–F805

    PubMed  CAS  Google Scholar 

  70. Combet S, Teillet L, Geelen G et al (2001) Food restriction prevents age-related polyuria by vasopressin-dependent recruitment of aquaporin-2. Am J Physiol Renal Physiol 281:F1123–F1131

    PubMed  CAS  Google Scholar 

  71. Swenson KL, Sands JM, Jacobs JD et al (1997) Effects of aging on the vasopressin and aquaporin response to dehydration in Fischer 344/Brown-Norway F1 rats. Am J Physiol Regul Integr Comp Physiol 273:R35–R47

    CAS  Google Scholar 

  72. Combat S, Geffroy N, Berthonaud V et al (2003) Correction of age related polyuria by dDAVP: molecular analysis of aquaporins and urea transporters. Am J Physiol Renal Physiol 284:F199–F208

    Google Scholar 

  73. Bengele HH, Mathias RS, Perkins JH et al (1981) Urinary concentrating defect in the aged rat. Am J Physiol 240:F147–F150

    PubMed  CAS  Google Scholar 

  74. Kbeinfebd M, Casimir M, Borra S (1979) Hyponatremia as observed in a chronic disease facility. J Am Geriatr Soc 27:156–161

    Google Scholar 

  75. Sunderam SG, Mankikar GD (1983) Hyponatraemia in the elderly. Age Aging 12:77–80

    CAS  Google Scholar 

  76. Adrogue HJ, Madias NE (2000) Hyponatremia. N Engl J Med 342:1581–1589

    PubMed  CAS  Google Scholar 

  77. Ellison DH, Berl T (2007) The syndrome of inappropriate antidiuresis. N Engl J Med 356:2064–2072

    PubMed  CAS  Google Scholar 

  78. Epstein M, Hollenberg NK (1976) Age as a determinant of renal sodium conservation in normal man. J Lab Clin Med 87:411–417

    PubMed  CAS  Google Scholar 

  79. Weidmann P, Demyttenaere-Bursztein S, Maxwell MH et al (1975) Effect of aging on plasma renin and aldosterone in normal man. Kidney Int 8:325–333

    Google Scholar 

  80. Crane MG, Harris JJ (1976) Effect of aging on renin activity and aldosterone excretion. J Lab Clin Med 87:947–959

    PubMed  CAS  Google Scholar 

  81. Shannon RP, Wei JY, Rosa RM et al (1986) The effect of age and sodium depletion on cardlovascubar response to orthostasis. Hypertension 8:438–443

    PubMed  CAS  Google Scholar 

  82. Musso CG, Liakopoulos V et al (2006) Acute renal failure in the elderly: particular characteristics. Int Urol Nephrol 38:787–793

    PubMed  Google Scholar 

  83. Luft FC, Grim CE, Fineberg N et al (1979) Effects of volume expansion and contraction in normotensive whites, blacks and subjects of different ages. Circulation 59:644–650

    Google Scholar 

  84. Luft FC, Weinberger MH, Fineberg NS et al (1987) Effects of age on renal sodium homeostasis and its relevance to sodium sensitivity. Am J Med 82(1B):9–15

    PubMed  CAS  Google Scholar 

  85. Masilamani S, Zhang XZ, Baylis C (1998) Bluntedpressure natriuresis in the old rat: participation of the renal nerves. Am J Kidney Dis 32(4):605–610

    PubMed  CAS  Google Scholar 

  86. Baylis C (1993) Renal responses to acute angiotensin II inhibition and administered angiotensin II in the aging, conscious. chronically catheterized rat. Am J Kidney Dis 22:842–850

    PubMed  CAS  Google Scholar 

  87. Luckey AE, Parsa CJ (2003) Fluid and electrolytes in the aged. Arch Surg 138:1055–1060

    PubMed  Google Scholar 

  88. Musso CG, Gregori JAA, Macias-Nunez JF (2008) Renal handling of uric acid. magnesium, phosphorus, calcium and acid base in the elderly. In: Macias-Nunez JF, Cameron JS, Oreopoulos DG (eds) The aging kidney in health and disease. Springer, pp 155–171

  89. Nakhoul F, Zmger C, Levin M, Gteen J, Winavet J, Better OS (1996) Urinary acidification capacity in the elderly. Prevalence of incomplete distal renal tubular acidosis in the healthy elderly. Geriat Nephrol Urol 5:149–155

    Google Scholar 

  90. Lindeman RD, Preuss HG (1994) Renal physiology and pathophysiology of aging. Geriat Nephrol Urol 4:113–120

    Google Scholar 

  91. Adler S, Lindeman RD, Yiengst SJ, Beard E, Shock NW (1968) Effect of acute acid loading on primary acid excretion by the aging human kidney. J Lab Clin Med 72:278–289

    PubMed  CAS  Google Scholar 

  92. Agarwal BN, Cabebe FG (1980) Renal acidification in elderly subjects. Nephron 26:291–293

    Article  PubMed  CAS  Google Scholar 

  93. Hideo Y, Sacktor B, Kinsella J (1992) Age-associated changes in ammoniagenesis in isolated rat renal tubule segments. Am J Physiol 262(Renal Fluid Electrolyte Physiol 31):F600–F605

    Google Scholar 

  94. Frassetto LA, Morris RC Jr, Sebastian A (1996) Effect of age on blood acid-base composition in adult humans: role of age-related renal functional decline. Am J Physiol 271(Renal Fluid Electrolyte Physiol. 40):F1114–F1122

    PubMed  CAS  Google Scholar 

  95. Alpern RJ (1995) Trade-offs in the adaptation to acidosis. Kidney Int 47:1205–1215

    PubMed  CAS  Google Scholar 

  96. Weidmann P, Demyttenaere-Bursztein S, Maxwell MH et al (1975) Effect of aging on plasma renin and aldosterone in normal man. Kidney Int 8:325–333

    PubMed  CAS  Google Scholar 

  97. Noth RH, Lassman N, Tan SY et al (1977) Age and the renin-aldosterone system. Arch Int Med 137:1414–1417

    CAS  Google Scholar 

  98. Tsunoda K, Abe K, Goto T (1986) Effect of age on the reninangiotensin-aldosterone system in normal subjects: simultaneous measurement of active and inactive renin, renin substrate and aldosterone in plasma. J Chin Endocrinol Metab 62:384–389

    CAS  Google Scholar 

  99. Annat G, Vinvent M, Tournlaire et al (1981) Relationship between blood pressure and plasma renin, aldosterone and dopammne-fJ-hydroxylase in the elderly. Gerontology 27:266–270

    PubMed  CAS  Google Scholar 

  100. Weidman P, Beretta-Piccohl C, Ziegler WH et al (1978) Age versus urinary sodium for judging renin, aldosterone, and catecholamine levels: studies in normal subjects and patients with essential hypertension. Kidney Int 14:619–628

    Google Scholar 

  101. Jung FF, Kennefick TM, Ingelfinger JR et al (1995) Down-regulation of the intrarenal renin-anglotensin system in the ageing rat. J Am Soc Nephrol 8:1573–1580

    Google Scholar 

  102. Skott P, Ingersbev J, Damkjaer Niebseon M et al (1987) The renin-angiotensin-aldosterone system in normal 85-year old people. Scand J Chin Lab Invest 47:6974

    Google Scholar 

  103. Musso C, Liakopoulos V et al (2006) Transtubular potassium concentration gradient: comparison between healthy old people and chronic renal failure patients. Int Urol Nephrol 38:387–390

    PubMed  Google Scholar 

  104. Eisenstaedt R, Penninx BW et al (2006) Anemia in the elderly: current understanding and emerging concepts. Blood Rev 20:213–226

    PubMed  Google Scholar 

  105. Ble A, Fink JC, Woodman RC et al (2005) Renal function, erythropoietin, and anemia of older persons: the InCHIANTI study. Arch Intern Med 165:2222–2227

    PubMed  CAS  Google Scholar 

  106. Ershler WB, Sheng S et al (2005) Serum erythropoietin and aging: a longitudinal analysis. J Am Geriatr Soc 53:1360–1365

    PubMed  Google Scholar 

  107. Carpenter MA, Kendall RG et al (1992) Reduced erythropoietin response to anaemia in elderly patients with normocytic anaemia. Eur J Haematol 49:119–121

    Article  PubMed  CAS  Google Scholar 

  108. Kario K, Matsuo T et al (1992) Reduced erythropoietin secretion in senile anemia. Am J Hematol 41:252–257

    PubMed  CAS  Google Scholar 

  109. Ferrucci L, Guralnik JM et al (2007) Unexplained anaemia in older persons is characterised by low erythropoietin and low levels of pro-inflammatory markers. Br J Haematol 136:849–855

    PubMed  CAS  Google Scholar 

  110. Dukas L, Schacht E et al (2005) In elderly men and women treated for osteoporosis a low creatinine clearance of <65 ml/min is a risk factor for falls and fractures. Osteoporos Int 16:1683–1690

    PubMed  CAS  Google Scholar 

  111. Gallagher JC, Rapuri P, Smith L (2007) Falls are associated with decreased renal function and insufficient calcitriol production by the kidney. J Steroid Biochem Mol Biol 103:610–613

    PubMed  CAS  Google Scholar 

  112. Arnaud CD, Sanchez SD (1990) The role of calcium in osteoporosis. Annu Rev Nutr 10:397–414

    PubMed  CAS  Google Scholar 

  113. Mensenkamp AR, Hoenderop JGJ, Bindels RJM (2006) Recent advances in renal tubular calcium reabsorption. Current Opinion Nephrol Hypertension 15:524–529

    Article  CAS  Google Scholar 

  114. Hoenderop JG, van der Kemp AW, Hartog A et al (1999) Molecular identification of the apical Ca2þ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274:8375–8378

    PubMed  CAS  Google Scholar 

  115. Clapham DE, Julius D, Montell C et al (2005) International union of pharmacology xlix nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57:427–450

    PubMed  CAS  Google Scholar 

  116. Nilius B, Vennekens R, Prenen J et al (2000) Whole-cell and single channel monovalentcation currents through the novel rabbit epithelial Ca2+ channel ECaC. J Physiol 527:239–248

    PubMed  CAS  Google Scholar 

  117. van Abel M, Hoenderop JG, van der Kemp AW et al (2005) Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney Int 68:1708–1721

    PubMed  Google Scholar 

  118. Hoenderop JG, Muller D, van der Kemp AW et al (2001) Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol 12:1342–1349

    PubMed  CAS  Google Scholar 

  119. Chang Q, Hoefs S, van der Kemp AW et al (2005) The beta-glucuronidase Klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493

    PubMed  CAS  Google Scholar 

  120. Kuro-OM MatsumuraY, Aizawa H et al (1997) Mutation of the mouse Klotho geneleads to a syndrome resembling ageing. Nature 390:45–51

    Google Scholar 

  121. Jiang H, Ju Z, Rudolph KL (2007) Telomere shortening and ageing. Z Gerontol Geriat 40:314–324

    CAS  Google Scholar 

  122. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673

    PubMed  CAS  Google Scholar 

  123. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Google Scholar 

  124. Melk A, Ramassar V, Helms LM et al (2000) Telomere shortening in kidney with age. J Am Soc Nephrol 11:444–453

    PubMed  CAS  Google Scholar 

  125. Hara E, Smith R, Parry D et al (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16:859–867

    PubMed  CAS  Google Scholar 

  126. Chkhotua AB, Gabusi E, Altimari A et al (2003) Increased expression of p16(INK4a) and p27(Kip1) cyclin-dependent kinase inhibitor genes in aging kidney and chronic allograft nephropathy. Am J Kidney Dis 41(6):1303–1313

    PubMed  CAS  Google Scholar 

  127. Melk A, Schmidt BM, Takeuchi O et al (2004) Expression of p16INK4a and other cell cycle regulator and senescence-associated genes in aging human kidney. Kidney Int 65:510–520

    PubMed  CAS  Google Scholar 

  128. Houben JMJ, Moonen HJJ, van Schooten FJ et al (2008) Telomere length assessment: biomarker of chronic oxidative stress? Free Rad Biol Med 44(3):235–246

    PubMed  CAS  Google Scholar 

  129. de Meyer T, Rietzschel ER, de Buyzere ML et al (2008) Studying telomeres in a longitudinal population based study. Front Biosci 13:2960–2970

    PubMed  Google Scholar 

  130. Arking DE, Krebsova A, Macek M Sr et al (2002) Association of human aging with a functional variant of Klotho. Proc Natl Acad Sci USA 99:856–861

    PubMed  CAS  Google Scholar 

  131. Arking DE, Becker DM, Yanek LR et al (2003) KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 72:1154–1161

    PubMed  CAS  Google Scholar 

  132. Arking DE, Atzmon G, Arking A et al (2005) Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res 96:412–418

    PubMed  CAS  Google Scholar 

  133. Kawano K, Ogata N, Chiano M et al (2002) Klotho gene polymorphisms associated with bone density of aged postmenopausal women. J Bone Miner Res 17:1744–1751

    PubMed  CAS  Google Scholar 

  134. Ogata N, Matsumura Y, Shiraki M et al (2002) Association of Klotho gene polymorphism with bone density and spondylosis of the lumbar spine in postmenopausal women. Bone 31:37–42

    PubMed  CAS  Google Scholar 

  135. Yamada Y, Ando F, Niino N et al (2005) Association of polymorphisms of the androgen receptor and Klotho genes with bone mineral density in Japanese women. J Mol Med 83:50–57

    PubMed  CAS  Google Scholar 

  136. Tohyama O, Imura A, Iwano A et al (2004) Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem 279:9777–9784

    PubMed  CAS  Google Scholar 

  137. Kurosu H, Yamamoto M, Clark JD et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    PubMed  CAS  Google Scholar 

  138. Kuro-o M (2008) Klotho as a regulator of oxidative stress and senescence. Biol Chem 389:233–241

    PubMed  CAS  Google Scholar 

  139. Mitobe M, Yoshida T et al (2005) Oxidative stress decreases Klotho expression in a mouse kidney cell line. Nephron Exp Nephrol 101:e67–e74

    PubMed  CAS  Google Scholar 

  140. Tsujikawa H, Kurotaki Y, Fujimori T et al (2003) Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 17:2393–2403

    PubMed  CAS  Google Scholar 

  141. Shimada T, Kakitani M, Yamazaki Y et al (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568

    PubMed  CAS  Google Scholar 

  142. Razzaque MS, Sitara D, Taguchi T et al (2006) Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 20:720–722

    PubMed  CAS  Google Scholar 

  143. Kurosu H, Ogawa Y, Miyoshi M et al (2006) Regulation of fibroblast growth factor–23 signaling by Klotho. J Biol Chem 281:6120–6123

    PubMed  CAS  Google Scholar 

  144. Fu L, John LM, Adams SH et al (2004) Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145:2594–2603

    PubMed  CAS  Google Scholar 

  145. Kharitonenkov A, Shiyanova TL, Koester A et al (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635

    PubMed  CAS  Google Scholar 

  146. Cassina P, Pehar M, Vargas MR et al (2005) Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem 93:38–46

    PubMed  CAS  Google Scholar 

  147. Saito K, Ishizaka N, Mitani H et al (2003) Iron chelation and free radical scavenger suppress angiotensin II–induced downregulation of Klotho, an anti-aging gene, in rat. FEBS Lett 551:58–62

    PubMed  CAS  Google Scholar 

  148. Nagai R, Saito Y, Ohyama Y et al (2000) Endothelial dysfunction in the Klotho mouse and downregulation of Klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol Life Sci 57:738–746

    PubMed  CAS  Google Scholar 

  149. Koh N, Fujimori T, Nishiguchi S et al (2001) Severely reduced production of Klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015–1020

    PubMed  CAS  Google Scholar 

  150. Mitani H, Ishizaka N, Aizawa T et al (2002) In vivo Klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension 39:838

    PubMed  CAS  Google Scholar 

  151. Mendoz-Nunez VM, Ruiz-Ramos M, Sanchez-Rodriguez MA et al (2007) Aging related oxidative stress in healthy humans. Tohoku J Exp Med 213:261–268

    Google Scholar 

  152. Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution and metabolic consequences. Ann N Y Acad Sci 1119:97–111

    PubMed  CAS  Google Scholar 

  153. Melk A, Kittikowit W, Sandhu I et al (2003) Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney Int 63:2134–2143

    PubMed  CAS  Google Scholar 

  154. Frenkel-Denkberg G, Gershon D et al (1999) The function of hypoxia-inducible factor 1 (HIF-1) is impaired in senescent mice. FEBS Lett 462:341–344

    PubMed  CAS  Google Scholar 

  155. Zou AP, Cowley AW Jr (2003) Reactive oxygen species and molecular regulation of renal oxygenation. Acta Physiol Scand 179:233–241

    PubMed  CAS  Google Scholar 

  156. Buemi M, Nostro L et al (2005) Kidney aging: from phenotype to genetics. Rejuvenation Res 8:101–109

    PubMed  CAS  Google Scholar 

  157. Reckelhoff JF, Kanji V et al (1998) Vitamin E ameliorates enhanced renal lipid peroxidation and accumulation of F2-isoprostanes in aging kidneys. Am J Physiol 274:R767–R774

    PubMed  CAS  Google Scholar 

  158. Verbeke P, Perichon M et al (2000) Inhibition of nitric oxide synthase activity by early and advanced glycation end products in cultured rabbit proximal tubular epithelial cells. Biochim Biophys Acta 1502:481–494

    PubMed  CAS  Google Scholar 

  159. Thomas SE, Anderson S et al (1998) Tubulointerstitial disease in aging: evidence for underlying peritubular capillary damage, a potential role for renal ischemia. J Am Soc Nephrol 9:231–242

    PubMed  CAS  Google Scholar 

  160. Basso N, Paglia N et al (2005) Protective effect of the inhibition of the renin-angiotensin system on aging. Regul Pept 128:247–252

    PubMed  CAS  Google Scholar 

  161. Zhou XJ, Vaziri ND, Zhang J et al (2002) Association of renal injury with nitric oxide deficiency in aged SHR: prevention by hypertension control with AT1 blockade. Kidney Int 62:914–921

    PubMed  CAS  Google Scholar 

  162. de Cavanagh EM, Piotrkowski B et al (2003) Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. Faseb J 17:1096–1098

    PubMed  Google Scholar 

  163. Huang C, Li J, Ke Q et al (2002) Ultraviolet-induced phosphorylation of p70(S6 K) at Thr(389) and Thr(421)/ Ser(424) involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C. Cancer Res 62:5689–5697

    PubMed  CAS  Google Scholar 

  164. Blagosklonny MV (2007) Program-like aging and mitochondria: instead of random damage by free radicals. J Cell Biochem 102:1389–1399

    PubMed  CAS  Google Scholar 

  165. Rodwell GEJ, Sonu R, Zahn JM et al (2004) A transcriptional profile of aging in the human kidney. PLoS Biol 2(12):e427

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin J. Zhou or Ramesh Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X.J., Saxena, R., Liu, Z. et al. Renal senescence in 2008: progress and challenges. Int Urol Nephrol 40, 823–839 (2008). https://doi.org/10.1007/s11255-008-9405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-008-9405-0

Keywords

Navigation