Skip to main content
Log in

Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario

  • Reviews
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Animal’s well-being, growth, and production are modulated by environmental conditions, and managemental practices and can be deleteriously affected by global warming phenomenon. In the recent years, unprecedented climatic fluctuations like sustained higher temperatures and humidity, heat waves, and solar flares have led to economic losses in $ billions to both milk and meat industry. It is estimated that by 2050, the US dairy industry alone will borne more than $1.7 billion loss. As human dependency on animal products like milk, meat, and eggs for nutrition is exponentially rising, there is urgency for maximum production. The high yielding animals are already under tremendous metabolic pressure making them more susceptible to adverse climatic conditions. When exposed to heat stress, livestock display a variety of behavioral and physiological acclimatization as essential survival strategies, but at the cost of decreased milk, meat, or egg production. Most of the studies have explored the heat stress in animals and its effect on different milk productions in a specific region or country. A clear understanding of the impact of global warming on dairy enterprise is yet to be comprehended. So this exploratory study will analyze impact of global warming on current milk production trends, economics, and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ACPC., 2011. The African Climate Policy Centre Report.uneca.org/acpc

  • ADB., 2009. The economics of climate change in South East Asia: a regional review, Asian Development Bank, Manila, Philippines.abd.org/publications/economics-climate-change-southeast-asia-regional-review

  • Alamer, M., 2011. The role of prolactin in thermoregulation and water balance during heat stress in domestic ruminants. Asian Journal of Animal & Veterinary Advances, 6, 1153-1169

    Article  CAS  Google Scholar 

  • Aleena, J., Pragna, P., Archana, P. R,, Sejian, V., Bagath, M., Krishnan, G., Manimaran, A., Beena, V., Kurien, E. K., Varma, G. and Bhatta, R., 2016. Significance of metabolic response in livestock for adapting to heat stress challenges. Asian Australian Journal of Animal Sciences, 10, 4–5, 224–234

    Article  CAS  Google Scholar 

  • Alexandratos, N. and Bruinsma, J., 2012. World agriculture towards 2030/2050: The 2012 revision. ESA Working Paper No. 12-03

  • Ali, A. and Hyder, M., 2008. Seasonal variation of reproductive performance, foetal development and progesterone concentration of sheep in subtropics. Reproduction in Domestic Animals, https://doi.org/10.1111/j.1439-0531.2007.0090.x.

  • Baharizadeh, M., 2012. Estimates of genetic parameters of production traits for Khuzestan buffaloes of Iran using repeated-records animal model. Pakistan Veterinary Journal, 32, 618-620

    Google Scholar 

  • Banerjee, D. and Ashutosh, 2011a. Effect of thermal exposure on diurnal rhythms of physiological parameters and feed, water intake in Tharparkar and Karan Fries heifers. Biological Rhythm Research, 42,1, 39–51

    Article  Google Scholar 

  • Banerjee, D. and Ashutosh, 2011b. Circadian changes in physiological responses and blood ionized sodium and potassium concentrations under thermal exposure in Tharparkar and Karan Fries heifers. Biological Rhythm Research, 42,2, 131–139

    Article  CAS  Google Scholar 

  • Bauman, D. E. and Vernon, R. G., 1993. Effects of exogenous bovine somatotropin on lactation. Annual Review of Nutrition, 13,437–461

    Article  CAS  PubMed  Google Scholar 

  • Baumgard, L.H. and Rhoads, R.P., 2012. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress. Journal of Animal Science, 90, 1855–1865

    Article  CAS  PubMed  Google Scholar 

  • Berman, A. J., 2005. Estimates of heat stress relief needs for Holstein dairy cows. Journal of Animal Science, 83, 6, 1377-1384

    Article  CAS  PubMed  Google Scholar 

  • Bernabucci, U., Lacetera, N., Danieli P. P., Bani, P., Nardone, A. and Ronchi, B. 2009. Influence of different periods of exposure to hot environment on rumen function and diet digestibility in sheep. International Journal of Biometeorology, 53, 387–395

    Article  CAS  PubMed  Google Scholar 

  • Bernabucci, U., Lacetera, N., Baumgard, L.H., Rhoads, R.P., Ronchi, B. and Nardone, A., 2010. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Journal of Animal Science, 4,7, 1167-1183

    CAS  Google Scholar 

  • Bernabucci, U., Basiricò, L., Morera, P., Dipasquale, D., Vitali, A., Piccioli Cappelli, F., and Calamari, L., 2015. Effect of summer season on milk protein fractions in Holstein cows. Journal of Dairy Science, 98, 1815–1827. https://doi.org/10.3168/jds.2014-8788

    Article  CAS  PubMed  Google Scholar 

  • Bharati, J., Dangi, S.S., Chouhan, V.S., Mishra, S.R., Bharti, M.K., Verma, V., Shankar, O., Yadav, V.P., Das, K., Paul, A., Bag, S., Maurya, V. P., Singh, G., Kumar, P. and Sarkar, M., 2017. Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle. International Journal of Biometeorology, 61,6,1017–1027

    PubMed  Google Scholar 

  • Bohmanova, J, Misztal, I. and Cole, J.B., 2007. Temperature humidity indices as indicators of milk production losses due to heat stress. Journal of Dairy Science, 90, 1947–1956

    Article  CAS  PubMed  Google Scholar 

  • Bórawski, P., Pawlewicz, A., Parzonko, A., Harper K. J. and Holden, L., 2020 Factors Shaping Cow’s Milk Production in the EU Sustainability, 12, 420; https://doi.org/10.3390/su12010420

    Article  Google Scholar 

  • Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M. and Belyea, R., 2002. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research, 51,6, 479-491

    Article  Google Scholar 

  • Broucek, J., Novak, J., Vokralova, J., Soch, M., Kisac, P. and Uhrinca, M., 2009. Effect of high temperature on milk production of cows from free-stall housing with natural ventilation. Slovak Journal of Animal Science, 42, 167-173

    Google Scholar 

  • Brown-Brandl, T. M., Eigenberg, R. A., Nienaber, J. A. and Hahn, G. L., 2005. Dynamic response indicators of heat stress in shaded and nonshaded feedlot cattle, Part 1: analyses of indicators. Biosystems Engineering,90 451–462

    Article  Google Scholar 

  • Capuco, A.V. and Ellis, S., 2005. Bovine mammary progenitor cells: current concepts and future directions. Journal of Mammary Gland Biology and Neoplasia, 10, 5–15

    Article  CAS  PubMed  Google Scholar 

  • Census of Agriculture, 2017. Census Publications, Ranking of Market Value of Ag Products Sold, New York. https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Rankings_of_Market_Value/New_York/index.php

  • Charmandari, E., Tsigos, C. and Chrousos, G., 2005. Endocrinology of the stress response. Annual Review of Physiology, 67, 259–284 https://doi.org/10.1146/annurev.physiol.67.040403.120816.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, Won-Tae, Laprise, R., Rueda, M. V., Mearns, L.O., Menendez, C.G., Raisanen, J., Rinke, A., Sarr, A. and Whetton, P., 2007. Regional Climate Projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK

  • Collier, R. J. and K. G. Gebremedhin. 2015. Thermal biology of domestic animals. Annual Review of Animal Bioscience, 3, 513–532. https://doi.org/10.1146/annurev-animal-022114-110659

    Article  Google Scholar 

  • Collier, R.J., Beede, D.K., Thatcher, W.W., Israel, L.A. and Wilcox, C.J, 1982. Influences of environment and its modification on dairy animal health and production. Journal of Dairy Science, 65, 2213–2227

    Article  CAS  PubMed  Google Scholar 

  • Collier, R.J., Baumgard, L.H., Lock, A.L. and Bauman, D.E., 2005. Physiological limitations, nutrient partitioning. In Yield of farmed species. Constraints and opportunities in the 21st Century (ed. R Sylvester-Bradley and J Wiseman, 351–377). Nottingham University Press, Nottingham, UK

    Google Scholar 

  • Collier, R.J., Stiening, C.M., Pollard, B.C., VanBaale, M.J., Baumgard, L.H., Gentry, P.C. and Coussens, P.M., 2006. Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. Journal of Animal Science 84 (Suppl), E1–E13

    Article  PubMed  Google Scholar 

  • Collier, R. J., Zimbelman, R. B., Rhoads, R. P., Rhoads, M. L. and Baumgard, L. H., 2011. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high production dairy cows. In Proceedings of the Western Dairy Management Conference, Reno, NV, ed. M. Gamroth, 113–26. Corvallis, OR: Western Dairy Management Conference.

  • Collier, R.J., Baumgard, L. H., Zimbelman, R. B., and Xiao Y., 2019. Heat stress: physiology of acclimation and adaptation. Animal Frontiers, 9, 1, 1-19

    Article  Google Scholar 

  • Coppock, C. E., 1985. Energy nutrition and metabolism of the lactating dairy cow. Journal of Dairy Science, 68,3403–3410

    Article  Google Scholar 

  • Cortignani, R., Dell, U. D., Acutis, M., Lacetera, N., Pasqui, M., Roggero, P.P and Dono, G., 2015. The economic impact of changes in climate variability on milk production in the area of Grana Padano, FACCE MACSUR Reports, 5, 5-18

    Google Scholar 

  • Devendra, C., 2012. Climate Change Threats and Effects: Challenges for Agriculture and Food Security. ASM Series on Climate Change. Academy of Sciences Malaysia

  • Devendra, C., Swanapoel, F.J.C., Strobel, A. and Rooyen, V., 2010, ‘Implications and innovative strategies for enhancing th future contribution of livestock’, in The Role of Livestock in Developing Communities: Enhancing Multifunctionality, eds FJ Swanapoe, A Strobel & M Shibonisao, University of Free State, Bloemfontein, S. Africa.

  • Dikmen, S., Khan, F.A., Huson, H.J., Sonstegard, T.S., Moss, J.I., Dahl G.E. and Hansen, P.J., 2014. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. Journal of Dairy Science, 97, 5508-5520

    Article  CAS  PubMed  Google Scholar 

  • DWD., 2011. Regional Climate Change – Climate Models in Comparison [in German: Regionaler Klimawandel – Klimamodelle im Vergleich]. Germany’s National Meteorological Service. www.dwd.de/bvbw/appmanager/bvbw

  • Escarcha, J.F., Lassa, J.A. and Zander, K.K., 2018. Livestock under climate change: a systematic review of impacts and adaptation. Climate, 6, 54; https://doi.org/10.3390/cli6030054.pp:1-17

    Article  Google Scholar 

  • EUROSTAT., 2015. Archive:Milk and Milk Products-30 Years of Quotas. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Archive:Milk_andmilk_products_-_30_years_of_quotas

  • FAO., 2007. Food and Agriculture Organization of the United Nations. Adaptation to climate change in agriculture, forestry, and fisheries: perspective, framework and priorities. FAO, Rome

  • FAOSTAT., 2020. Agricultural production database. Food and Agricultural Organization. http://www.apps.fao.org

  • Flood, S., 2013. Projected Economic Impacts of Climate Change on Irish Agriculture. Stop Climate Chaos, Ireland

  • Gaafar, H.M.A., Gendy, M.E., Bassiouni, M.I., Shamiah, S.M., Halawa, A.A. and Hamd, M.A. 2011. Effect of heat stress on performance of dairy Friesian cow’s milk production and composition. Researcher, 3,5, 85-93

    Google Scholar 

  • Ganesan, S., Summers, C.M., Pearce, S.C., Gabler, N.K., Valentine, R.J., Baumgrad, L.H., Rhoads, R.P., Selby, J.T., 2017. Short-term heat stress causes altered intracellular signaling in oxidative skeletal muscle. Journal of Animal science, 95(6),2438-2451

    CAS  PubMed  Google Scholar 

  • Garnett, T., 2009. Livestock-related greenhouse gas emissions: impacts and options for policymakers. Environmental Science & Policy, 12(4):491–503

    Article  CAS  Google Scholar 

  • Gaughan, J.B., T.L. Mader, S.M. Holt, M.L. Sullivan and G.L. Hahn, 2010. Assessing the heat tolerance of 17 beef cattle genotypes. International Journal of Biometeorology, 54, 617-627

    Article  CAS  PubMed  Google Scholar 

  • Gauly, M., Bollwein, H., Breves, G., Brü Gemann, K., Dä Nicke, S., Das, G., Demeler, J., Hansen, H., Isselstein, J., Kö Nig, S., Lohö Lter, M., Martinsohn, M., Meyer, U., Potthoff, M., Sanker, C., Schrö Der, B., Wrage, N., Meibaum, B., Von Samson-Himmelstjerna, G., Stinshoff, H. and Wrenzycki, C., 2012. Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe – a review Animal,1 – 17. https://doi.org/10.1017/S1751731112002352

  • Hansen, P.J., 2004. Physiological and cellular adaptation of zebu cattle to thermal stress. Animal Reproduction Science,82–83

  • Hanslow, K., Gunasekera, D., Cullen, B. and Newth, D., 2014. Economic impacts of climate change on the Australian dairy sector. Australian Journal of Agricultural and Resource Economics, 58,1, 60-77

    Article  Google Scholar 

  • Hennessy, K., Clarke, J., Erwin, T., Wilson, L. and Heady, C., 2016. Climate change impacts on Australia’s dairy regions. CSIRO Oceans and Atmosphere, Melbourne, Australia

    Google Scholar 

  • Horowitz, M., 2002. From molecular and cellular to integrative heat defense during exposure to chronic heat. Comparative Biochemistry and Physiology Part A 131, 475–483

    Article  Google Scholar 

  • Horowitz, M., Kaspler P., Marmary, Y. and Oron, Y., 1996. Evidence for contribution of effector organ cellular responses to biphasic dynamics of heat acclimation. Journal of Applied Physiology 80, 77–85

    Article  CAS  PubMed  Google Scholar 

  • Hu, H., Zhang, Y., Zheng, N., Cheng, J. and Wang, J., 2016. The effect of heat stress on gene expression and synthesis of heat-shock and milk proteins in bovine mammary epithelial cells. Animal Science Journal,87, 84–91. https://doi.org/10.1111/asj.12375

    Article  CAS  PubMed  Google Scholar 

  • Hulme, M., Doherty, R.M., Ngara, T. M.N., New, M.G. and Lister, D., 2001. African climate change: 1900-2100. Climate Research, 17,2, 145-168

    Article  Google Scholar 

  • Hurst, P., Termine, P. and Karl, M., 2005. Agricultural workers and their contribution to sustainable agriculture and rural development. FAO, Rome ftp://ftp.fao.org/docrep/fao/008/af164e/af164e00.pdf

  • Hussain, R., Javed, M.T., Khan, A., Mahmood, F. and Kausar, R., 2012. Mastitis and associated histo-pathological consequences in the context of udder morphology. International Journal of Agriculture and Biology, 14, 947-952

    Google Scholar 

  • Intergovernmental Panel on Climate Change., 2007. Climate Change 2007: the physical science basis. in Solomon, S., Gin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (eds), Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK/New York, NY, USA, pp. 996.

    Google Scholar 

  • Intergovernmental Panel on Climate Change., 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the IPCC, Geneva, Switzerland, 151.

  • Intergovernmental Panel on Climate Change., 2014a, climate change 2014: impacts, adaptation and vulnerability. Part A: global and sectoral aspects .contributions of working group II to fifth assessment report of IPCC. Cambridge (UK)/New york (NY).Cambridge university press, 1132

  • Intergovernmental Panel on Climate Change., 2018. 2018- special report: global warming of 1.5oC and Climate change synthesis report.

  • International Commission for Thermal Physiology., 2001. Glossary of terms for thermal physiology, 3rd edition. The Japanese Journal of Physiology 51, 245–280

    Google Scholar 

  • International Farm Comparison Network (IFCN)., 2019. IFCN Dairy Report 2019, Global Dairy Trends and Drivers 2019

  • Joksimovic-Todorovic, M., Davidovic, V., Hristov, S. and Stankovic, B., 2011. Effect of heat stress on milk production in dairy cows. Biotechnology in Animal Husbandry, 27,1017-1023

    Article  Google Scholar 

  • Kadzere, C.T., Murphy, M.R., Silanikove, N. and Maltz, E., 2002. Heat stress in lactating dairy cows: a review. Livestock Production Science, 77, 59–91.

    Article  Google Scholar 

  • Kalaugher, E., Bornman, J.F., Clark, A. and Beukes, P., 2013. An integrated biophysical and socio-economic framework for analysis of climate change adaptation strategies: The case of a New Zealand dairy farming system. Environmental Modelling and Software, 39, 176-187

    Article  Google Scholar 

  • Key, N., Sneeringer, S. and Marquardt, D., 2014. Climate change, heat stress and U.S. dairy production. A Report Summary from the Economic Research Service, United States Department of Agriculture. http://www.ers.usda.gov/media/1679930/err175.pdf

  • Khalifa, H.H., Shalaby, T. and Abdel-Khalek, T.M.M., 2005. An approach to develop a biometeorological thermal discomfort index for sheep and goats under Egyptian conditions. In Proceeding of the 17th International Congress of Biometeorology (International Society of Biometeorology), pp. 118–122. Offenbach am Main, Garmisch-Partenkirchen, Germany

  • Kilgannon, C. and Eid, K., 2018. When the Death of a Family Farm Leads to Suicide. The New York Times, 19 March 2018

  • Kulkarni, A.A., Pingle, S.S., Atakare, V.G. and Deshmukh, A.B., 1998. Effect of climatic factors on milk production in crossbred cows. Indian Veterinary Journal 75,9,846–847

    Google Scholar 

  • Kumar, J., Yadav, B., Madan, A.K., Kumar, M., Sirohi, R. and Reddy, V.A., 2019. Dynamics of heat-shock proteins, metabolic and endocrine responses during increasing temperature humidity index (THI) in lactating Hariana (Zebu) cattle. Biological Rhythm Research,1-17 https://doi.org/10.1080/09291016.2019.1566986.

  • Lakew, H., 2017. Economic Impact of Climate Change on Milk Production: A Case Study of Selected Areas in the Free State, MSc Thesis, University of the Free State, 85

    Google Scholar 

  • Low, D., Purvis, A., Reilly, T., and Cable, N.T., 2005. The Prolactin response to active and passive heating in man. Experimental Physiology,90(6),909-917

    Article  CAS  PubMed  Google Scholar 

  • Marchesini, G., Cortese, M., Mottaran, D., Ricci, R., Serva, L., Contiero, B., Segato, S. and Andrighetto, I., 2018. Effects of axial and ceiling fans on environmental conditions, performance and rumination in beef cattle during the early fattening period. Livestock Science, 214,225–230. https://doi.org/10.1016/j.livsci.2018.06.009

    Article  Google Scholar 

  • Mariani, P., Summer, A., Martuzzi, F. and Catalano, A.L., 1998. Seasonal variations of milk rennetability: summertime worsening of curd farming rate of Friesian herd milks yielded in the Po valley plain. Proc. Intern. Symp. Livestock production and climatic uncertainty in the Mediterranean, Agadir (Marocco). Europian Association for Animal Production, 94,347–349

    Google Scholar 

  • Martinsohn, M., Hansen, H., Johann Heinrich von Thünen-Institut, Braunschweig. 2012. The Impact of Climate Change on the Economics of Dairy Farming – a Review and Evaluation. German Journal of Agricultural Economics, 61, 2, 80-95

    Google Scholar 

  • Mauger, G., Bauman, Y., Nennich, T. and Salathé, E., 2015. Impacts of Climate Change on Milk Production in the United States, The Professional Geographer ,121-131

  • Miller, N., Delbecchi, L., Petitclerc, D., Wagner, G.F., Talbot, B.G. and Lacasse, P., 2006. Effect of stage of lactation and parity on mammary gland cell renewal. Journal of Dairy Science, 89, 4669–4677

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., and S. F. Morrison. 2008. A thermosensory pathway that controls body temperature. Nat. Neurosci. 11:62–71. https://doi.org/10.1038/nn2027

    Article  CAS  PubMed  Google Scholar 

  • Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M.S. and Bernabucci U., 2010. Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130, 57–69 https://doi.org/10.1016/j.livsci.2010.02.011

    Article  Google Scholar 

  • National Research Council, 1981. Effect of Environment on Nutrient Requirements of Domestic Animals. National Academy Press, Washington, D.C. Dr. Joe West, Extension Dairy Specialist, University of Georgia.

  • National Research Council, 2001. Nutrient Requirements of Dairy Cattle, National Academy Press, Washington, DC.

    Google Scholar 

  • National Weather Service., 2005. Heat Index Calculator. National Weather Service Jackson, Kentucky. Heat Index Charts-National Climatic Data Centre

  • Nesamvuni E., Lekalakala R., Norris D., and Ngambi J. W., 2012. Effect of Climate Change on Dairy Cattle in South Africa. African Journal of Agricultural Research, 7, 26,3867-3872

    Article  Google Scholar 

  • Nkondze, M.S., Masuku, M.B. and Manyatsi, A.M., 2013. The Impact of Climate Change on Livestock Production in Swaziland: The case of Mpolonjeni Area Development Programme. Journal of Agricultural Studies, 2(1), 1-15

    Article  Google Scholar 

  • Nonaka, I., Takusari, N., Tajima, K., Suzuki, Higuchi, T., and Kurihara, K. M., 2008.Effects of high environmental temperatures on physiological and nutritional status of prepubertal Holstein heifers. Livestock Science, 113, 14–23

    Article  Google Scholar 

  • Osei-Amponsah, R., Frank R., Dunshea, F.R., Leury, B.J., Cheng, L., Cullen, B., Joy, A., Abhijith, A., Zhang, M. A. and Chauhan, A.S., 2020 . Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy. Animals, 10, 869, 1-12,https://doi.org/10.3390/ani10050869

    Article  Google Scholar 

  • Pereira, A. M. F., Baccari, F., Titto, E. A. L., Almeida, J.A.A. and Afonso, J. A., 2008.Effect of thermal stress on physiological parameters, feed intake and plasma thyroid hormones concentration in Alentejana, Mertolenga, Frisian and Limousine cattle breeds. International Journal of Biometeorology, 52, 3, 199–208

    Article  PubMed  Google Scholar 

  • Pragna, P., Archana, P.R., Aleena, J., Sejian, V., Krishnan, G, Krishnan, G., Bagath, M., Manimaran, A., Beena, V., Kurien, E.K., Varma, G. and Bhatta, R., 2016. Heat Stress and Dairy Cow: Impact on Both Milk Yield and Composition. International Journal of Dairy Science,12: 1-11 https://doi.org/10.3923/ijds.2016

    Article  Google Scholar 

  • Pragna, P., Sejian, V., Soren, N.M., Bagath, M., Krishnan, G., Beena, V., Devi, P.I. and Bhatta, R., 2018. Summer season induced rhythmic alterations in metabolic activities to adapt to heat stress in three indigenous (Osmanabadi, Malabari and Salem Black) goat breeds. Biological Rhythm Research, 49,4,551–565

    Article  Google Scholar 

  • Punsalmaa, B.B., Buyndalai, B. and Nyamsuren, B., 2013. Adaptation measures to climate change in the Mongolian livestock sector. In Climate Adaptation Futures; John Wiley & Sons: Hoboken, NJ, USA, 279–283

    Chapter  Google Scholar 

  • Purwanto, B. P.,   Abo, Y. Sakamoto, R. Furumoto, F.  Yamamoto, S. 1990. Diurnal patterns of heat production and heart rate under thermoneutral conditions in Holstein Friesian cows differing in milk production. The Journal of Agricultural Science 114 (2):139–142

  • Rashamol, V. P., Sejian, V., Pragna, P., Lees, A. M., Bagath, M., Krishnan, G. and Gaughan, J. B, 2019. Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock. International Journal of Biometeorology, https://doi.org/10.1007/s00484-019-01735-9

  • Ratnakaran, A.P., Sejian, V., Jose, V.S., Vaswani, S., Bagath, M., Krishnan, G., Beena, V., Devi, I. P., Varma, G. and Bhatta, R., 2017. Behavioural responses to livestock adaptation to heat stress challenges. Asian Australian Journal of Animal Sciences, 11,1,1–13

    Google Scholar 

  • Reisinger, A., R.L. Kitching, F. Chiew, L. Hughes, P.C.D. Newton, S.S. Schuster, A. Tait, and P. Whetton, 2014: Australasia. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,1371-1438

    Google Scholar 

  • Reynolds C, Crompton L, Mills J (2010) Livestock and climate changeimpacts in the developing world. Outlook Agric 39(4):245–248

    Article  Google Scholar 

  • Rhoads, M.L., Rhoads, R.P., Van Baale, M.J., Collier, R.J., Sanders, S.R.,Weber, W.J., Crooker, B.A. and Baumgard, L. H., 2009. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism and aspects of circulating somatotropin. Journal of Dairy Science, 92, 1986-1997

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Downing, M., Melissa, A., Nejadhashemi, P., Harrigan, T. and Woznicki, S.A., 2017. Climate Change and Livestock: Impacts, Adaptation, and Mitigation. Climate Risk Management, 16,145-63 https://doi.org/10.1016/j.crm.2017.02.001.

    Article  Google Scholar 

  • Rout, P.K., Kaushik, R. and Ramachandran, N., 2016. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period. Cell Stress Chaperon, 21,645–651

    Article  CAS  Google Scholar 

  • Roy, K.S. and Prakash, B.S., 2007. Seasonal variation and circadian rhythmicity of the prolactin profile during the summer months in repeat-breeding Murrah buffalo heifers. Reproduction Fertility and Development 19, 569–575

    Article  CAS  Google Scholar 

  • Sejian, V., Maurya, V.P., Sayeed, M.K. and Naqvi, 2010. Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment. International Journal of Biometeorology, 54, 653-661

    Article  PubMed  Google Scholar 

  • Seo, S. N and Mendelsohn, R., 2006. The impact of climate change on livestock management in Africa: A structural Ricardian analysis. CEEPA Discussion Paper No. 23, Centre for Environmental Economics and Policy in Africa, University of Pretoria

  • Seo, S.N. and Mendelsohn, R., 2006a. Climate change adaptation in Africa: A microeconomic analysis of livestock choice. CEEPA Discussion Paper No. 19, Centre for Environmental Economics and Policy in Africa, University of Pretoria, South Africa

  • Shearer, J.K. and Beede, D.K., 1990. Thermoregulation and physiological responses of dairy cattle in hot weather. Agricultural Practices, 11, 4, 5–11

    Google Scholar 

  • Shinde, S., Taneja, V.K. and Singh, A., 1990. Association of climatic variables and production and reproduction traits in crossbreds. Indian Journal of Animal Science, 60,1, 81–85

    Google Scholar 

  • Silanikove, N., 2000. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67,1–18 https://doi.org/10.1016/S0301-6226(00)00162-7

    Article  Google Scholar 

  • Silanikove, N., Shapiro, F. and Shinder, D., 2009. Acute heat stress brings down milk secretion in dairy cows by up-regulating the activity of the milk-borne negative feedback regulatory system. BMC Physiology, 9,13 https://doi.org/10.1186/1472-6793-9-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SNZ., 2012. Global New Zealand – International Trade, Investment, and Travel Profile: Year ended June 2012. Ministry of Foreign Affairs and Trade and Statistics New Zealand (SNZ), Wellington, New Zealand, 196

  • Spiers D.E., Spain, J.N., Sampson, J.D. and Rhoads R.P., 2004. Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows. Journal of Thermal Biology, 29, 759–764

    Article  Google Scholar 

  • St. Pierre, N. R., Cobanov, B. and Schnitkey, G., 2003. Economic losses from heat stress by US livestock industries. Journal of Dairy Science, 86 (E Suppl.):E52–E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5

    Article  Google Scholar 

  • St.-Pierre, N. R., 2013. Current and future economic impact of heat stress in the U.S. livestock and poultry sectors waste to worth: spreading science and solutions. Denver (CO). April 1–5, 2013. https://articles.extension.org/pages/67799/current-andfuture-economic-impact-of-heat-stress-in-the-us-livestock-and-poultrysectors

  • Staal, S., Ahuja, V., Hemme, T. and Sharma, V.P., 2016. Dairy Economics and Policy: Focus on Asia. Dairy Asia Working Paper Series Working Paper Number: 2016-02

  • Tailor, S.P. and Nagda, R.K., 2005. Conception rate in buffaloes maintained under subhumid climate of Rajasthan. Indian Journal of Dairy Science, 58,1,69–70

    Google Scholar 

  • Thornton, P. K., Van de Steeg, J., Notenbaert, A. and Herrero, M., 2009. The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agricultural Systems, 101,113–127. https://doi.org/10.1016/j.agsy.2009.05.002

    Article  Google Scholar 

  • Trivedi, K. R., 2017. Dairy Asia Workshop Paper Series. Dairy Asia: Towards Sustainability, workshop paper no. 2017-04,1-73

  • Turp T., Öztürk T., Türkeş M. and Kurnaz M.L., 2015. Assessment of projected changes in air temperature and precipitation over the Mediterranean region via multimodel ensemble mean of CMIP5 models. J. Black Sea/Mediterranean Environment, 21, Special Issue: 93-96

  • United Nations., 2013. World population projected to reach 9.6 billion by 2050. United Nations Department of Economic and Social Affairs. http://www.un.org/en/development/desa/news/population/un-report-world-population-projected-to-reach-9-6-billion-by-2050.html

  • Vitali, A., Segnalini, M., Bertocchi, L., Bernabucci, U., Nardone, A. and Lacetera, N., 2009.Seasonal pattern of mortality and relationships between mortality and temperature humidity index in dairy cows. Journal of Dairy Science, 92, 3781–3790

    Article  CAS  PubMed  Google Scholar 

  • Walsh S.W., Williams, E.J., and Evans, A.C., 2011. A Review of the Causes ofPoor Fertility in High Milk Producing Dairy Cows. Animal Reproduction Science, 123, 3-4,127-138 https://doi.org/10.1016/j.anireprosci.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Wankar, A.K., Singh, G. and Yadav, B., 2014.Thermoregulatory and adaptive responses of adult buffaloes (Bubalus bubalis) during hyperthermia: Physiological, behavioral, and metabolic approach. Veterinary World,7,825-830

    Article  Google Scholar 

  • Wankar, A.K., Singh, G. and Yadav, B., 2017. Biochemical profile and methane emission during controlled thermal stress in buffaloes (Bubalus Bubalis).Buffalo Bulletin, 36,1,15-22

    Google Scholar 

  • Wankar, A.K., Singh, G. and Yadav, B., 2019. Effect of temperature X THI on acclimatization in buffaloes subjected to simulated heat stress: physio-metabolic profile, methane emission and nutrient digestibility. Biological Rhythm Research, 1-15 https://doi.org/10.1080/09291016.2019.1673652

  • Wheelock, J. B., Rhoads, R. P., Vanbaale, M. J., Sanders, S. R. and Baumgard, L. H., 2010. Effects of heat stress on energetic metabolism in lactating holstein cows. Journal of Dairy Science, 93,644–655 https://doi.org/10.3168/jds.2009-2295

    Article  CAS  PubMed  Google Scholar 

  • Wratt, D., Mullan, A.B., Tait, A., Woods, R., Baisden, T., Giltrap, D., Hendy, J. and Stroombergen, A., 2008. Costs and Benefits of Climate Change and Adaptation to Climate Change in New Zealand Agriculture: What Do We Know so Far? Contract Report by Eco Climate Consortium: Integrated Research on the Economics of Climate Change Impacts Adaptation and Mitigation. Ministry of Agriculture and Forestry, New Zealand. 112

  • Wright, I.A., Tarawali, S., Blümmel, M., Gerard, B., Teufel, N. and Herrero, M., 2012. Integrating crops and livestock in subtropical agricultural systems. Journal of the Science of Food and Agriculture, 92,5,1010–1015

    Article  PubMed  Google Scholar 

  • Yadav, B., Singh, G., Wankar, A.K., Dutta, N., Chaturvedi, V. B. and Verma, M. R., 2016. Effect of Simulated Heat Stress on Digestibility, Methane Emission and Metabolic Adaptability in Crossbred Cattle. Asian Australian Journal of Animal Science, 29,1585-1592

    Article  CAS  Google Scholar 

  • Yadav, B., Singh, G. and Wankar, A.K., 2019. Acclimatization dynamics to extreme heat stress in crossbred cattle. Biological Rhythm Research, 1-11

  • Younas, M., Ishaq, I. and Ali, I., 2012. Effect of Climate Change on Livestock Production in Pakistan 2012. Proceeding of the 2nd International Seminar on Animal Industry, Jakarta, 554-561

  • Zhao, X. and Lacasse, P., 2008. Mammary tissue damage during bovine mastitis: Causes and control. Journal of Animal Science, 86, 57-65

    Article  CAS  PubMed  Google Scholar 

  • Ziggers, D., 2012. Heat stress in dairy cows review. All About Feed.net, 20, 26-27

  • Zimbelman, R.B., Rhoads, R.P., Rhoads, M.L., Duff, G.C., Baumgard, L.H. and Collier, R.J., 2009. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. Proceedings of the Southwest Nutrition Conference (ed. RJ Collier), 158–169. Retrieved February 2, 2009, from http://cals.arizona.edu/ans/swnmc/Proceedings/2009/14Collier_09.pdf

Download references

Acknowledgments

The authors are sincerely thankful to colleagues and College of Veterinary and Animal Sciences, Parbhani (MAFSU), for the support in this project.

Author information

Authors and Affiliations

Authors

Contributions

AKW conceptualized the idea of this review; AKW and SNR conducted the literature search, analysis of data and preparation of drafts. NSD helped with editing the manuscript and other technical aspects.

Corresponding author

Correspondence to Alok K. Wankar.

Ethics declarations

None required.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 129 kb)

ESM 2

(PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wankar, A.K., Rindhe, S.N. & Doijad, N.S. Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario. Trop Anim Health Prod 53, 70 (2021). https://doi.org/10.1007/s11250-020-02541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-020-02541-x

Keywords

Navigation