Skip to main content
Log in

Active Control of Adhesion Forces Between Wet Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Capillary and surface effects at the interface between two media enhance adhesion in wet environments. This phenomenon, called wet adhesion, is exploited in nature by some insects and amphibians to stand or walk over wet substrates. Since surface effects are generally voltage-sensitive, as demonstrated, for example, by electrowetting phenomena, one may expect that the strength of wet adhesion could be adjusted by using electric means. Indeed, in this paper, we show that the liquid-mediated adhesion between a flat and a grooved surface, the latter equipped with interdigitated electrodes deposited beneath it, can be reduced by more than 80 %, when a 90 V DC voltage is applied. The described technique points out the possibility of realizing surfaces with tunable adhesive properties, when in contact with wet substrates, which may be useful for several applications, including the development of propulsion systems for autonomous endoscopic robots and the fabrication of microgrippers for the manipulation of small objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wiegemann, M.: Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): mechanisms and technical applications. Aquat. Sci. 67, 166–176 (2005)

    Article  Google Scholar 

  2. Guvendiren, M., Messersmith, P.B., Shull, K.R.: Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9, 122–128 (2008)

    Article  Google Scholar 

  3. Kamino, K.: Underwater adhesive of marine organisms as the vital link between biological science and material science. Mar. Biotechnol. 10, 111–121 (2008)

    Article  Google Scholar 

  4. Majumder, A., Ghatak, A., Sharma, A.: Microfluidic adhesion induced by subsurface microstructures. Science 318, 258–261 (2007)

    Article  Google Scholar 

  5. Qian, J., Gao, H.: Scaling effects of wet adhesion in biological attachment systems. Acta Biomater. 2, 51–58 (2006)

    Article  Google Scholar 

  6. Dirks, J.H., Clemente, C.J., Federle, W.: Insect tricks: two-phasic foot pad secretion prevents slipping. J. R. Soc. Interface 7, 587–593 (2010)

    Article  Google Scholar 

  7. Gorb, S., Jiao, Y., Scherger, M.: Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J. Comp. Physiol. A. 186, 821–831 (2000)

    Article  Google Scholar 

  8. Barnes, W.J.P.: Biomimetic solutions to sticky problems. Science 318, 203–204 (2007)

    Article  Google Scholar 

  9. Mugele, F., Baret, J.-C.: Electrowetting: from basics to applications. J. Phys. Condens. Matter 17, R705 (2005)

    Article  Google Scholar 

  10. Pollack, M.G., Pamula, V.K., Srinivasan, V., Eckhardt, A.E.: Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Rev. Mol. Diagn. 11, 393–407 (2011)

    Article  Google Scholar 

  11. Hendriks, B.H.W., Kuiper, S., Van As, M.A.J., Renders, C.A., Tukker, T.W.: Electrowetting-based variable-focus lens for miniature systems. Opt. Rev. 12, 255–259 (2005)

    Article  Google Scholar 

  12. Atencia, J., Beebe, D.J.: Controlled microfluidic interfaces. Nature 437, 648–655 (2005)

    Article  Google Scholar 

  13. Heikenfeld, J., et al.: Progress in arrayed electrowetting optics. Opt. Photon. News 20, 20–26 (2009)

    Article  Google Scholar 

  14. Vasudev, A., Zhe, J.: A capillary microgripper based on electrowetting. Appl. Phys. Lett. 93, 103503 (2008)

    Article  Google Scholar 

  15. De Souza, E.J., Brinkmann, M., Mohrdieck, C., Arzt, E.: Enhancement of capillary forces by multiple liquid bridges. Langmuir 24(16), 8813–8820 (2008)

    Article  Google Scholar 

  16. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Vol. 2: Mainly Electromagnetism and Matter. Addison-Wesley, Reading (1979)

    Google Scholar 

  17. Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M.C., Dario, P.: Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans. Biomed. Eng. 49(6), 613–616 (2002)

    Article  Google Scholar 

  18. Accoto, D., Passanisi, S., Guglielmelli, E.: Pinch locomotion: a novel propulsion technique for endoscopic robots. In: Proceedings of 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1377–1382 (2012)

  19. Raj, B., Dhindsa, M., Smith, N.R., Laughlin, R., Heikenfeld, J.: Ion and liquid dependent dielectric failure in electrowetting systems. Langmuir 25(20), 12387–12392 (2009)

    Article  Google Scholar 

  20. Francomano, M.T., Accoto, D., Guglielmelli, E.: Artificial sense of slip—a review. IEEE Sens. J. 13(7), 2489–2498 (2013)

    Article  Google Scholar 

  21. Francomano, M.T., Accoto, D., Guglielmelli, E.: Experimental characterization of a flexible thermal slip sensor. Sensors 12(11), 15267–15280 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Accoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Accoto, D., Francomano, M.T. Active Control of Adhesion Forces Between Wet Surfaces. Tribol Lett 54, 207–212 (2014). https://doi.org/10.1007/s11249-014-0315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0315-2

Keywords

Navigation