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Abstract
Regioselective reactions allow the differentiation between two or more chemically identical reactive centers within the same 
molecule. They are highly desirable transformations in organic synthesis, as they avoid additional chemical operations and 
sophisticated protection/deprotection strategies. In this context, enzymes, which present exquisite selectivity and reactivity, 
have been widely employed as catalysts in numerous regioselective transformations. This review focuses on two recently 
developed biocatalytic processes that present outstanding regioselectity: the transaminase-catalyzed asymmetric amination 
of di- and triketo compounds, and the stereoselective C–C coupling between phenol derivatives, ammonia and pyruvate for 
the synthesis of tyrosine analogues, catalyzed by tyrosine phenol lyases. Additionally, elegant and straightforward cascades 
that have combined the aforementioned biotransformations with other enzymatic and/or chemocatalytic processes are com-
piled in this contribution. Overall, this review aims to provide a general view of the synthetic possibilities that two relatively 
recently described regio- and stereoselective biotransformations can provide.

Keywords  Biocatalysis · Regioselectivity · Identical functional group differentiation · Transaminase · Tyrosine phenol 
lyase · Protecting-group-free

1  Introduction

Over the last 15 years, biocatalysis has emerged as a valu-
able tool in organic chemistry that provides straightforward 
and efficient alternatives to the traditional chemical and 
chemocatalytic approaches used in synthesis. Among the 
various advantages of the use of enzymes for synthetic pur-
poses, the most important is probably their inherent selec-
tivity [1]. When enzymes catalyze the transformation of a 
substrate, they can distinguish between different stereoiso-
mers or different orientations of prochiral/meso compounds 
(stereoselectivity), between different functional groups (che-
moselectivity), or between functional groups that are chemi-
cally identical but situated in different positions within the 
same molecule (regioselectivity) [2].

Regioselective transformations are highly desirable in 
organic synthesis as they avoid additional reaction steps and 

sophisticated protection/deprotection strategies [3, 4], thus 
resulting in simpler, higher-yielding and more cost-effec-
tive synthesis routes. Consequently, protecting-group-free 
strategies are considered superior to traditional protection-
based routes and have received well-deserved recognition 
[5, 6]. In the field of biocatalysis, regioselective reactions 
have been described for numerous enzyme classes, whereby 
hydrolytic enzymes have been studied in most detail [7, 8]. 
For instance, in carbohydrate chemistry, lipases can catalyze 
the selective acylation of a single primary [9] or secondary 
alcohol [10] in the presence of several other primary or sec-
ondary hydroxyl groups, respectively. Among other selective 
transformations, lipases also catalyze the monoamidation of 
glutamic acid diesters [11], the monodeacetylation of di- or 
triacetoxyacetophenones by transesterification [12], and the 
monoacetylation of dihydroxybenzene derivatives with vinyl 
acetate [13]. Likewise, dinitriles have been hydrolyzed to 
the corresponding monocarboxylic acids by nitrilases [14] 
or to monoamides by nitrile hydratases [15] with moderate 
to excellent regioselectivity. Epoxide hydrolases showing 
opposite regioselectivity on the (S)- and (R)-enantiomer of 
the same substrate have been used for the enantioconver-
gent hydrolysis of racemic mixtures of oxiranes [16–28] into 
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vicinal diols. Methyl transferases perform highly regioselec-
tive methylations in vivo and have also been successfully 
employed in biocatalysis for regioselective alkyl transfer, in 
some cases using non-natural derivatives of the S-adenosyl 
methionine (SAM) cofactor as alkyl donors [29–33]. Oxi-
doreductases are also capable of differentiating between 
identical functional groups: Alcohol dehydrogenases have 
been found to reduce one carbonyl group of diketo com-
pounds with very high regio- and enantioselectivity [34, 35], 
and both native and evolved P450 monooxygenases have 
successfully been applied in the regio- and stereoselective 
hydroxylation of arenes, linear alkanes, terpenes, and ster-
oids [36–45]. Also worth mentioning is the oxidative mono-
cleavage of dialkenes at the expense of molecular oxygen 
that has been achieved using an enzyme preparation from 
the fungus Trametes hirsuta [46].

Among the different regioselective enzymatic reactions 
existing in literature, in this contribution we will focus on 
two biotransformations that have gained particular relevance 
in the last few years. These are the monoamination of multi-
keto compounds catalyzed by transaminases, and the para-
selective C–C bond formation reaction mediated by tyrosine 
phenol lyases on para-unsubstituted phenols. In addition, 
examples of cascades that have employed either of these 
biotransformations in combination with further biocatalytic 
processes for the regio- and stereoselective synthesis of 
nitrogen heterocycles and tyrosine derivatives will be dis-
cussed in this review.

2 � Regioselective Transformations Catalyzed 
by Transaminases

Optically pure amines are valuable building blocks in the 
synthesis of pharmaceuticals and agrochemicals. In addition, 
versatile applications as resolving agents, chiral auxiliaries 
and organocatalytic reagents have been reported for this 
compound class [47]. Therefore, synthetic organic chem-
ists have historically devoted great effort to the development 
of efficient and versatile strategies for the stereoselective 
synthesis of chiral amines. These efforts have also led to 
the development of several biocatalytic methods for chiral 
amine synthesis, which rely on enzymes such as lipases, 
amine oxidases, imine reductases, and transaminases, among 
others [48–51]. Transaminases (TAs, EC 2.6.1.X) are pyri-
doxal 5′-phosphate (PLP)-dependent enzymes that mediate 
the stereoselective transfer of an amino group from an amine 
donor to a carbonyl acceptor. Depending on the stereopref-
erence of the selected enzyme, (S)- or (R)-amines can be 
accessed in high optical purity starting from the prochiral 
ketones [52–56]. Taking advantage of their potential, these 
biocatalysts have been implemented in pharmaceutical syn-
thesis during the last decade. An outstanding example is the 

TA-catalyzed stereoselective amination that has replaced a 
rhodium(I)-mediated asymmetric enamine hydrogenation 
as the key step in the manufacture of the antidiabetic drug 
Sitagliptin [57].

Focusing on the scope of this contribution, TAs have 
been successfully applied to regioselective transformations. 
In particular, the asymmetric monoamination of di- and trik-
etones has been achieved. Most wild-type TAs present a high 
selectivity for the sterically less demanding ketone moiety, 
in particular methyl ketones, while carbonyl groups with 
more bulky substituents remain untouched. This selectivity 
was exploited for the regio- and stereoselective monoamina-
tion of diketones without the use of protecting groups [58]. 
1,5-Diketo compounds were exclusively converted into one 
out of the two possible regioisomeric aminoketone inter-
mediates. These species spontaneously cyclized, yielding 
the corresponding Δ1-piperideines in optically pure form 
(Scheme 1). By choosing TAs with suitable stereoprefer-
ence, both enantiomers of the piperideines could be accessed 
in up to > 99% conversion and ee.

Diastereoselective reduction of the cyclic imines thus 
formed gave access to the corresponding 2,6-disubstituted 
piperidines. For instance, the two enantiomers of the alka-
loids dihydropinidine [59] and isosolenopsin [60] were 
synthesized in three steps from the commercially available 
6-methyl-3,4-dihydropyran-2-one with overall yields of 
61–72% over three steps (Scheme 2a). Grignard reactions 
gave access to the corresponding 1,5-diketone compounds, 
which were regio- and stereoselectively transformed into the 
Δ1-piperideines through transaminase-catalyzed reactions. 
The cyclic imines were readily reduced by hydrogenation 
with palladium on charcoal (Pd/C) as catalyst, affording the 
cis-disubstituted piperidines with excellent diastereoselec-
tivity (> 98% de). In a similar fashion, both enantiomers of 
the alkaloid epi-dihydropinidine (Scheme 2b) were accessed 
in high yield (up to 91% over two steps) and moderate dias-
tereoselectivity when the enantiopure imine intermediate 
was treated with LiAlH4 in the presence of Et3Al [59]. This 
reduction reaction, in contrast to the Pd/C-catalyzed hydro-
genation, affords predominantly the anti-diastereoisomers.

An extension of this concept was recently used in the 
chemo-enzymatic asymmetric synthesis of both enantiom-
ers of the ant venom alkaloid xenovenine [61]. A key step 
in this process is the biocatalytic amination of a triketone 
intermediate, which was prepared in two steps starting from 
commercially available 2-(n-heptyl)furan (Scheme 3). Two 
enantiocomplementary TAs from Arthrobacter sp. medi-
ated the regio- and stereoselective amination of the least 
sterically demanding carbonyl group, followed by the spon-
taneous cyclization of the resulting intermediate. The five-
membered cyclic amine obtained was aromatized to the cor-
responding pyrrolizidine by subjecting the crude product of 
the biotransformation to a 0.1% v/v solution of acetic acid 
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in methanol. Finally, the hydrogenation of this compound 
catalyzed by Pd/C in the presence of camphorsulphonic acid 
(CSA) led to the desired (5Z, 8E)-diastereoisomer, indepen-
dently of the substrate enantiomer. Thus, the naturally occur-
ring (+)-enantiomer was obtained in 30% isolated yield over 
the three steps by treating the triketone with the (R)-TA from 
Arthrobacter sp., whereas the (S)-TA from Arthrobacter sp. 
led to the formation of (–)-xenovenine in 48% yield. Both 
antipodes were isolated in enantio- and diastereomerically 
pure form.

Taking further advantage of this methodology, an elegant 
multienzymatic approach combining TAs and mononoam-
ine oxidases (MAOs) has been described for the asymmet-
ric synthesis of 2,5-disubstituted pyrrolidines [62, 63]. The 
authors employed two commercially available transaminases 
with opposite stereopreference, ATA-113 and ATA-117, for 
the regio- and stereoselective synthesis of (S)- and (R)-Δ1-
pyrrolines, respectively. In this case, hydrogenation of the 
cyclic imines over Pd/C proceeded with poor diastereoselec-
tivity and was hence not a suitable method for obtaining the 
corresponding disubstituted pyrrolidines as pure stereoiso-
mers. Instead, the authors implemented a ‘cyclic deracemisa-
tion’ system using monoamine oxidase and ammonia–borane 
to obtain the desired chiral pyrrolidines in excellent optical 

purity (Scheme 4). The non-selective reducing agent NH3·BH3 
reduces the cyclic imine to a mixture of diasteroisomers of 
the desired amine. Engineered variants of monoamine oxidase 
from Aspergillus niger (MAO-N) catalyze the selective oxida-
tion of the (5S)-diastereomer back to the imine. Successive 
rounds of reduction and oxidation, which take place concur-
rently in the same reaction vessel, lead to accumulation of the 
(5R)-configured pyrrolidine in > 99% de. Due to the comple-
mentary regioselectivity displayed by the TAs and the MAO-N 
variants, the stereochemistry of C2 (established by the TA) 
was not affected by MAO-N. Consequently, the cascade pro-
ceeded with excellent enantio- and diasteroselectivity (up to 
> 99% ee and > 99% de) for almost all cases studied.

Due to the fact that this contribution focuses only on regi-
oselective processes, TA-catalyzed conversion of ketones 
in the presence of ester groups within the same molecule 
[64–66], or the differentiation between aldehyde and ketone 
groups are out of the scope of this review [67, 68].
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Scheme 1   Regioselective amination of various 1,5-diketones. AlaDH alanine dehydrogenase, FDH formate dehydrogenase
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3 � Regioselective Transformations Catalyzed 
by Tyrosine Phenol Lyases

The formation of carbon–carbon (C–C) bonds is the key 
reaction in organic synthesis that builds the carbon frame-
work of every organic molecule by connecting smaller and 
simpler substructures. The development and identification 
of new biocatalysts able to mediate C–C couplings with 
high control of chemo-, regio- and stereoselectivity has 
undoubtedly expanded the chemist’s toolbox for the syn-
thesis of multifunctional products [69]. For instance, the 

chemical synthesis of tyrosine derivatives, which are valu-
able building blocks in the synthesis of several anti-cancer 
therapeutics [70, 71], comprises several laborious and 
time-consuming steps. In contrast, PLP-dependent tyros-
ine phenol lyases (TPLs, EC 4.1.99.2) can catalyze the 
regio- and stereoselective reversible formation of tyros-
ine from pyruvate, phenols and ammonia in a single and 
“green” reaction [72–74]. TPLs are not limited to phenol 
as substrate, however: For instance, the TPL from Erwinia 
herbicola has been used to convert catechol into l-dihy-
droxyphenylalanine (l-DOPA) [75, 76], and this reaction 
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Scheme 2   a Total synthesis of the two enantiomers of dihydropini-
dine (n = 1) and isosolenopsin (n = 7). The chemoenzymatic approach 
combines a Grignard reaction [A], a TA-catalyzed regioselective 
monoamination [B], and a diastereoselective syn-hydrogenation cata-

lyzed by Pd/C [C]. b Synthesis of (2S, 6S)- and (2R, 6R)-epi-dihy-
dropinidine. Imine intermediates were synthesized as shown in a, and 
then reduced by LiAlH4 in the presence of Et3Al affording the anti-
diastereoisomers
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has very recently been applied to a bacterial system with 
an expanded genetic code that can biosynthesize DOPA 
and employ it for protein synthesis [77]. An engineered 
variant of TPL from Citrobacter freundii (M379V) has 
been shown to accept a range of 2-substituted phenols 

as substrates, hence giving access to non-natural, mono-
substituted l-tyrosine derivatives in moderate to excel-
lent conversions (52–99%) and excellent optical purity 
(ee > 99%; Scheme  5). In all cases the C–C coupling 
occurred with excellent regioselectivity; therefore, only 

Scheme 3   Total synthesis of 
the two enantiomers of (5Z, 
8E)-xenovenine. The chemoe-
nzymatic approach combines 
a retro-Paal–Knorr reaction 
[A], a TA-catalyzed regioselec-
tive monoamination [B], an 
aromatization reaction [C], and 
a diastereoselective hydrogena-
tion catalyzed by Pd/C in the 
presence of CSA [D]. R = n-
C7H15 CSA = camphorsulfonic 
acid
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Scheme 4   ATA-113/MAO-N one-pot sequential process for the syn-
thesis of (2S, 5R)-disubstituted pyrrolidines. [A] First step, regio- and 
stereoselective amination of 1,4-diketones catalyzed by the (S)-selec-

tive ATA-113. [B] Second step, the MAO-N/NH3·BH3 system medi-
ates the diastereoselective conversion of the (S)-pyrrolines into the 
corresponding (2S,5R)-pyrrolidines. GDH glucose dehydrogenase
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the product bearing the substituent in position 3′ of tyros-
ine was detected [78].

Moreover, different enzyme engineering approaches 
have taken advantage of the activity shown by TPLs to 
successfully incorporate unnatural amino acids (UAAs) 
into recombinant proteins. While traditional mutagenesis 
is limited to the ‘chemical space’ of the 20 proteinogenic 
amino acids, the introduction of non-natural residues gives 
access to novel side-chain functionalities that can lead to 
more robust enzymes with enhanced catalytic properties 
[79]. For instance, a double variant of the TPL from Citro-
bacter freundii (M288S/F448C) has been used to catalyze 
the formation of the metal-chelating UAA 2-amino-3-(8-
hydroxyquinolin-5-yl)propanoic acid (HqAla, Scheme 6) 
from 8-hydroxyquinoline, ammonium chloride and pyruvate 
in high yield. After purification, HqAla was site-specifically 
incorporated into green fluorescent proteins, enabling them 
to sense Cu2+ ions, which opens the door for biosensing 
applications [80]. In addition, examples of improved enzy-
matic activity and modified selectivity resulting from the 
incorporation of UAAs were also reported by the same 
authors. In one study, a single variant of the Symbiobac-
terium sp. TPL (M379V) was used to access 3-methoxy-
tyrosine (OMeY, Scheme 6) from 2-methoxyphenol. The 
tyrosine analog was selectively incorporated at a defined 

site in myoglobin, increasing the oxygen reduction activity 
of the protein and changing the predominant reaction prod-
uct from H2O2 to water [81]. Likewise, the genetic incor-
poration of 3-methylthiotyrosine (SMeY, Scheme 6), also 
synthesized by a TPL-catalyzed coupling, into myoglobin 
provided a protein fourfold more active than the original 
enzyme towards the reduction of hydroxylamine to ammo-
nia [82]. Both modifications mimic the active-site environ-
ment of other heme enzymes, namely cytochrome c oxidase 
(OMeY) and cyctochrome c nitrite reductase (SMeY). The 
preparation of various fluorotyrosines by TPL-catalysed 
C–C coupling as well as the incorporation of these UAAs 
into peptides and proteins has also been reported [83, 84].

The excellent performance shown by TPLs for the 
regio- and stereoselective preparation of l-tyrosine deriva-
tives has enabled the coupling of this reaction to other 
biocatalytic processes, resulting in several elegant multi-
enzymatic cascades. For instance, the combined use of a 
P450 monoxygenase with the TPL variant M379V from 
Citrobacter freundii gave access to tyrosine analogs from 
substituted benzenes, pyruvate and ammonia in a one-
pot two-step cascade (Scheme 7a) [85]. In the first step, 
monosubstituted arenes were regioselectively hydroxy-
lated in the ortho-position by the monooxygenase P450 
BM3 at the expense of oxygen and NADPH, yielding the 
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MODULE 1. Reaction time: 24 h MODULE 2. Reaction time: 3 h

Scheme 7   Multienzymatic syntheses involving the regio- and enanti-
oselective TPL-catalyzed coupling of phenol derivatives with ammo-
nia and pyruvate: a One-pot two-step P450 monooxygenase–TPL 
cascade for the synthesis of l-tyrosine analogs from benzene deriva-
tives. b One-pot two-step TPL–TAL cascade for the para-selective 
alkenylation of unprotected phenols. c One-pot three-step TPL–

TAL–FAD cascade for the para-selective vinylation of unprotected 
phenols. d Two-step enzymatic synthesis of tyramine combining the 
TPL-catalyzed synthesis of l-tyrosine with its TDC-catalyzed decar-
boxylation. e One-pot two-module three-step cascade for the prepara-
tion of (R)- and (S)-p-hydroxphenyl lactic acids from p-unsubstituted 
phenols
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corresponding phenols. These compounds were excellent 
substrates for the subsequent TPL-catalyzed process, and 
the desired amino acids were obtained in moderate to good 
conversion (up to 72%) and chemoselectivity (up to 80%). 
In some cases, a lower selectivity was observed as a result 
of an undesired P450-mediated overoxidation of the mono-
substituted phenol intermediates.

More recently, the regioselective transformation cata-
lyzed by TPL was successfully combined with a tyrosine 
ammonia lyase (TAL) from Rhodobacter sphaeroides, 
which mediated the ammonia elimination that gave access 
to p-coumaric acid derivatives from phenols. This bio-
catalytic process constituted the first direct para-selective 
alkenylation of these derivatives without the presence of 
an auxiliary group in para-position. Only pyruvate was 
used as stoichiometric reagent, as the ammonia that is 
consumed in the TPL-catalyzed coupling was internally 
regenerated in the elimination step mediated by the TAL, 
thus making water the sole coproduct [86]. Seven phe-
nols (including halogenated derivatives) were thus trans-
formed into the α,β-unsaturated carboxylic acids with high 
to excellent conversions and perfect selectivity towards 
the E-isomer (Scheme 7b). The addition of a ferulic acid 
decarboxylase (FAD) to the bienzymatic process just 
described resulted in the formation of para-vinylphenols 
via decarboxylation of the corresponding p-coumaric acid 
derivatives (Scheme 7c). The FAD-catalyzed decarboxyla-
tion is an irreversible transformation that drives the equi-
librium towards product formation, and consequently 2-, 
3-, and 2,3-substituted phenols were transformed into the 
para-vinylated products in excellent conversion (> 99%) 
for all the cases studied [87]. To highlight the importance 
of this contribution, it must be mentioned that, while vinyl 
arenes are important building blocks in organic chemistry, 
their synthesis from unprotected phenols is not straight-
forward. The chemical reaction with SnCl4·Bu3N leads 
to ortho functionalization [88], whereas the synthesis of 
para-vinylphenols involves transition-metal-catalyzed 
couplings in which the presence of auxiliary groups at the 
para-position is strictly necessary [89, 90].

In another bienzymatic approach, l-tyrosine formed 
by a TPL reaction was used as substrate for immobilized 
cells containing a heterologously expressed tyrosine decar-
boxylase (TDC). The latter mediated the decarboxylation 
of l-tyrosine, yielding tyramine [2-(p-hydroxyphenyl)eth-
ylamine], a bioactive metabolite and valuable intermediate 
in the synthesis of pharmaceutical drugs [91]. The authors 
were able to scale up the two-step enzymatic process con-
verting 15 L of pyruvate fermentation broth into the l-tyros-
ine intermediate in 94% isolated yield. The decarboxylation 
reaction provided the desired tyramine in 91% yield, thus 
reaching 86% overall yield after the two biocatalytic reac-
tions (Scheme 7d).

Likewise, the TPL-catalyzed regio- and enantioselec-
tive tyrosine formation allowed the preparation of enan-
tiopure (R)- and (S)-p-hydroxyphenyl lactic acids when it 
was combined with two additional biocatalytic reactions 
that employed an l-amino acid deaminase (l-ADD) and an 
enantioselective hydroxyacid dehydrogenase, respectively 
[92]. This elegant three-step cascade was performed in one 
pot and subdivided into two different modules that were 
run sequentially. The first module comprised the l-tyrosine 
formation catalyzed by the TPL from Citrobacter freundii 
M379V, whereas the second module consisted of two biocat-
alytic transformations: the oxidative deamination mediated 
by the l-ADD from Proteus myxofaciens and the reduction 
of the resulting 2-keto acid derivatives using as catalysts 
the two stereocomplementary 2-hydroxyisocaproate dehy-
drogenases from Lactobacillus paracasei (L-HicDH) 
and Lactobacillus confusus (d-HicDH) (Scheme 7e). The 
TPL–L-ADD–HicDH cascade led to the transformation 
of p-unsubstituted phenols to both enantiomers of the cor-
responding p-hydroxyphenyl lactic acids in excellent con-
version (92% to > 99%), high isolated yield (58–85%) and 
excellent optical purity (96% to > 97%) for all the cases 
studied.

4 � Conclusion and Outlook

Enzyme catalysis has become a well-established discipline 
that provides valuable and efficient tools for the synthesis of 
pharmaceuticals and other bioactive compounds with excel-
lent chemo-, regio- and stereoselectivity. This contribution 
focuses on two regioselective processes that, by definition, 
allow the differentiation between two or more chemically 
identical functional groups at different positions of a sub-
strate molecule. Thus, several examples of asymmetric mon-
oamination of di- and triketones catalyzed by transaminases 
have been discussed in detail. Likewise, a compilation of 
strategies that have taken advantage of the ability presented 
by tyrosine phenol lyases to distinguish between different 
sites of phenols, leading to the synthesis of l-tyrosine ana-
logues, have also been described in this review. Both these 
regioselective processes have attained well-deserved recog-
nition in recent years as a consequence of having shortened 
sophisticated and time-consuming synthesis routes for the 
preparation of drugs and important building blocks, thus 
resulting in protecting-group-free strategies with consid-
erably higher yield and overall efficiency than traditional 
approaches.

Overall, transaminases and tyrosine phenol lyases cata-
lyze highly selective and versatile transformations with a 
large potential for synthetic application, especially when 
combined with other enzymatic or chemocatalytic reac-
tions. They thus represent a valuable extension of the 



1216	 Topics in Catalysis (2019) 62:1208–1217

1 3

organic chemist’s toolbox for the preparation of chiral target 
molecules.
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