Skip to main content

Advertisement

Log in

Comparative Studies of Ethanol and Ethylene Glycol Oxidation on Platinum Electrocatalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ethanol represents a promising energy source for powering fuel cells. The development of direct ethanol fuel cells is however challenged by both the sluggish kinetics of the ethanol oxidation reaction and the poor selectivity toward complete oxidation. In this work, we combine spectroelectrochemical studies of extended surfaces using sum frequency generation (SFG) and product-resolved electrocatalytic measurements under potentiostatic conditions to investigate the electro-oxidation of alcohols. By comparing the electro-oxidation of ethanol and ethylene glycol, we illustrate the different catalytic mechanisms of C–C bond cleavage and identify the role of β carbon in hindering the complete oxidation of ethanol toward CO2. Our findings provide new insights into the development of efficient electrocatalysts for multi-carbon alcohol oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldemberg J (2007) Science 315:808–810

    Article  CAS  PubMed  Google Scholar 

  2. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Science 311:506–508

    Article  CAS  PubMed  Google Scholar 

  3. Demirbas A (2007) Prog Energy Combust 33:1–18

    Article  CAS  Google Scholar 

  4. Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Appl Energy 145:80–103

    Article  CAS  Google Scholar 

  5. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) J Power Sources 105:283–296

    Article  CAS  Google Scholar 

  6. Antolini E (2007) J Power Sources 170:1–12

    Article  CAS  Google Scholar 

  7. Wang Q, Sun GQ, Jiang LH, Xin Q, Sun SG, Jiang YX, Chen SP, Jusys Z, Behm RJ (2007) Phys Chem Chem Phys 9:2686–2696

    Article  CAS  PubMed  Google Scholar 

  8. Braunchweig B, Hibbitts D, Neurock M, Wieckowski A (2013) Catal Today 202:197–209

    Article  CAS  Google Scholar 

  9. Lai SCS, Koper MTM (2008) Faraday Discuss 140:399–416

    Article  CAS  PubMed  Google Scholar 

  10. Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2008) Faraday Discuss 140:379–397

    Article  CAS  PubMed  Google Scholar 

  11. Leung LWH, Chang SC, Weaver MJ (1989) J Electroanal Chem 266:317–336

    Article  CAS  Google Scholar 

  12. Wang H, Jusys Z, Behm RJ (2004) J Phys Chem B 108:19413–19424

    Article  CAS  Google Scholar 

  13. Rao V, Hariyanto, Cremers C, Stimming U (2007) Fuel Cells 7:417–423

    Article  CAS  Google Scholar 

  14. Lai SCS, Kleijn SEF, Ozturk FTZ, Vellinga VCV, Koning J, Rodriguez P, Koper MTM (2010) Catal Today 154:92–104

    Article  CAS  Google Scholar 

  15. Sun S, Heinen M, Jusys Z, Behm RJ (2012) J Power Sources 204:1–13

    Article  CAS  Google Scholar 

  16. Shao MH, Adzic RR (2005) Electrochim Acta 50:2415–2422

    Article  CAS  Google Scholar 

  17. Lai SCS, Kleyn SEF, Rosca V, Koper MTM (2008) J Phys Chem C 112:19080–19087

    Article  CAS  Google Scholar 

  18. Colmati F, Tremiliosi G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2009) Phys Chem Chem Phys 11:9114–9123

    Article  CAS  PubMed  Google Scholar 

  19. Kutz RB, Braunschweig B, Mukherjee P, Behrens RL, Dlott DD, Wieckowski A (2011) J Catal 278:181–188

    Article  CAS  Google Scholar 

  20. Kavanagh R, Cao XM, Lin WF, Hardacre C, Hu P (2012) Angew Chem Int Ed 51:1572–1575

    Article  CAS  Google Scholar 

  21. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) J Phys Chem 97:12020–12029

    Article  CAS  Google Scholar 

  22. Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, Lamy C (1998) J Electroanal Chem 444:41–53

    Article  CAS  Google Scholar 

  23. Kakati N, Maiti J, Lee SH, Jee SH, Viswanathan B, Yoon YS (2014) Chem Rev 114:12397–12429

    Article  CAS  PubMed  Google Scholar 

  24. de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) J Phys Chem B 106:9825–9830

    Article  CAS  Google Scholar 

  25. Neto AO, Giz MJ, Perez J, Ticianelli EA, Gonzalez ER (2002) J Electrochem Soc 149:A272–A279

    Google Scholar 

  26. Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Poulianitis K, Kontou S, Tsiakaras P (2004) J Power Sources 131:217–223

    Article  CAS  Google Scholar 

  27. Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, Behm RJ (2006) Electrochim Acta 52:221–233

    Article  CAS  Google Scholar 

  28. Sen S, Sen F, Gokagac G (2011) Phys Chem Chem Phys 13:6784–6792

    Article  CAS  PubMed  Google Scholar 

  29. Zhu MY, Sun GQ, Xin Q (2009) Electrochim Acta 54:1511–1518

    Article  CAS  Google Scholar 

  30. Kim JH, Choi SM, Nam SH, Seo MH, Choi SH, Kim WB (2008) Appl Catal B Environ 82:89–102

    Article  CAS  Google Scholar 

  31. Camara GA, de Lima RB, Iwasita T (2004) Electrochem Commun 6:812–815

    Article  CAS  Google Scholar 

  32. Rousseau S, Coutanceau C, Lamy C, Leger JM (2006) J Power Sources 158:18–24

    Article  CAS  Google Scholar 

  33. Jin JM, Sheng T, Lin X, Kavanagh R, Hamer P, Hu PJ, Hardacre C, Martinez-Bonastre A, Sharman J, Thompsett D, Lin WF (2014) Phys Chem Chem Phys 16:9432–9440

    Article  CAS  PubMed  Google Scholar 

  34. Salciccioli M, Yu WT, Barteau MA, Chen JGG, Vlachos DG (2011) J Am Chem Soc 133:7996–8004

    Article  CAS  PubMed  Google Scholar 

  35. Schnaidt J, Heinen M, Jusys Z, Behm RJ (2012) J Phys Chem C 116:2872–2883

    Article  CAS  Google Scholar 

  36. Aran-Ais RM, Herrero E, Feliu JM (2014) Electrochem Commun 45:40–43

    Article  CAS  Google Scholar 

  37. Shen YR (1996) Proc Natl Acad Sci USA 93:12104–12111

    Article  CAS  PubMed  Google Scholar 

  38. Baldelli S, Gewirth AA (2006) Adv Electrochem Sci Eng 9:163–198

    CAS  Google Scholar 

  39. Gomes JF, Bergamaski K, Pinto MFS, Miranda PB (2013) J Catal 302:67–82

    Article  CAS  Google Scholar 

  40. Wang H, Jusys Z, Behm RJ (2006) J Electroanal Chem 595:23–36

    Article  CAS  Google Scholar 

  41. Delpeuch AB, Asset T, Chatenet M, Cremers C (2014) J Electrochem Soc 161:F918–F924

    Article  CAS  Google Scholar 

  42. Buso-Rogero C, Brimaud S, Solla-Gullon J, Vidal-Iglesias FJ, Herrero E, Behm RJ, Feliu JM (2016) J Electroanal Chem 763:116–124

    Article  CAS  Google Scholar 

  43. Housmans THM, Wonders AH, Koper MTM (2006) J Phys Chem B 110:10021–10031

    Article  CAS  PubMed  Google Scholar 

  44. Wonders AH, Housmans THM, Rosca V, Koper MTM (2006) J Appl Electrochem 36:1215–1221

    Article  CAS  Google Scholar 

  45. Rizo R, Lazaro MJ, Pastor E, Koper MTM (2016) ChemElectroChem 3:2196–2201

    Article  CAS  Google Scholar 

  46. Peng S, Lee YM, Wang C, Yin HF, Dai S, Sun SH (2008) Nano Res 1:229–234

    Article  CAS  Google Scholar 

  47. Baldelli S, Markovic N, Ross P, Shen Y-R, Somorjai G (2000) Sum-frequency generation of CO on (111) and polycrystalline platinum electrode surfaces: evidence for SFG invisible surface CO. J Phys Chem 103:8920–8925

    Google Scholar 

  48. Markovic NM, Ross PN (2002) Surf Sci Rep 45:121–229

    Article  Google Scholar 

  49. Lopez-Cudero A, Cuesta A, Gutierrez C (2005) J Electroanal Chem 579:1–12

    Article  CAS  Google Scholar 

  50. Cuesta A, Couto A, Rincon A, Perez MC, Lopez-Cudero A, Gutierrez C (2006) J Electroanal Chem 586:184–195

    Article  CAS  Google Scholar 

  51. Lopez-Cudero A, Cuesta A, Gutierrez C (2006) J Electroanal Chem 586:204–216

    Article  CAS  Google Scholar 

  52. Strmcnik DS, Tripkovic DV, van der Vliet D, Chang KC, Komanicky V, You H, Karapetrov G, Greeley J, Stamenkovic VR, Markovic NM (2008) J Am Chem Soc 130:15332–15339

    Article  CAS  PubMed  Google Scholar 

  53. Farias MJS, Camara GA, Feliu JM (2015) J Phys Chem C 119:20272–20282

    Article  CAS  Google Scholar 

  54. Dederichs F, Friedrich KA, Daum W (2000) J Phys Chem B 104:6626–6632

    Article  CAS  Google Scholar 

  55. Ferre-Vilaplana A, Buso-Rogero C, Feliu JM, Herrero E (2016) J Phys Chem C 120:11590–11597

    Article  CAS  Google Scholar 

  56. Wang H-F, Liu Z-P (2008) J Am Chem Soc 130:10996–11004

    Article  CAS  PubMed  Google Scholar 

  57. Lai SCS, Koper MTM (2010) J Phys Chem Lett 1:1122–1125

    Article  CAS  Google Scholar 

  58. Li DG, Wang C, Tripkovic D, Sun SH, Markovic NM, Stamenkovic VR (2012) ACS Catal 2:1358–1362

    Article  CAS  Google Scholar 

  59. van der Vliet DF, Wang C, Li DG, Paulikas AP, Greeley J, Rankin RB, Strmcnik D, Tripkovic D, Markovic NM, Stamenkovic VR (2012) Angew Chem Int Ed 51:3139–3142

    Article  CAS  Google Scholar 

  60. Wang H, Jusys Z, Behm RJ (2009) Electrochim Acta 54:6484–6498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Investigator Award of Army Research Office (W911 NF-15-1-0123) and the Discovery Award of the Johns Hopkins University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David H. Gracias or Chao Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 857 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewan, S., Raciti, D., Liu, Y. et al. Comparative Studies of Ethanol and Ethylene Glycol Oxidation on Platinum Electrocatalysts. Top Catal 61, 1035–1042 (2018). https://doi.org/10.1007/s11244-018-0930-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0930-5

Keywords

Navigation