Skip to main content
Log in

Decarboxylative Cross-Coupling of Cinnamic Acids Catalyzed by Iron-Based Covalent Organic Frameworks

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

FeCl3·6H2O was anchored in the pores of a layered crystalline imine-based mesoporous covalent organic framework (TPB-DMTP-COF) with surface area of 1200 m2/g and pores of 34 Å, affording the material FeCl3@TPB-DMTP-COF that worked as iron based heterogeneous catalyst. This new porous material was used in the decarboxylative oxidation cross-coupling reaction of cinnamic acids showing good to excellent catalytic activity with good chemical yields and short reaction time. FeCl3@TPB-DMTP-COF exhibit moderate surface area (235 m2/g) and high thermal and chemical stability allowing it use for several catalytic cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Saha P, Jeon H, Mishra PK, Rhee H-W, Kwak JH (2016) J Mol Catal A 417(Supplement C):10–18

    Article  CAS  Google Scholar 

  2. Veisi H, Manesh AA, Eivazi N, Faraji AR (2015) RSC Adv 5(26):20098–20107

    Article  CAS  Google Scholar 

  3. Luo Y, Liu J, Liu Y, Lyu Y (2017) J Polym Sci Part A 55(16):2594–2600

    Article  CAS  Google Scholar 

  4. Bai L, Phua SZF, Lim WQ, Jana A, Luo Z, Tham HP, Zhao L, Gao Q, Zhao Y (2016) Chem Comm 52(22):4128–4131

    Article  CAS  PubMed  Google Scholar 

  5. Fang Q, Wang J, Gu S, Kaspar RB, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y (2015) J Am Chem Soc 137(26):8352–8355

    Article  CAS  PubMed  Google Scholar 

  6. Kim IS, Li Z, Zheng J, Platero-Prats AE, Mavrandonakis A, Pellizzeri S, Ferrandon M, Vjunov A, Gallington LC, Webber T, Vermeulen NA, Penn RL, Getman RB, Cramer CJ, Chapman KW, Camaioni DM, Fulton JL, Lercher JA, Farha OK, Hupp JT, Martinson A (2018) Angew Chem Int Ed 57(4):909–913

    Article  CAS  Google Scholar 

  7. Li Z, Schweitzer NM, League AB, Bernales V, Peters AW, Getsoian AB, Wang TC, Miller JT, Vjunov A, Fulton JL, Lercher JA, Cramer CJ, Gagliardi L, Hupp JT, Farha OK (2016) J Am Chem Soc 138(6):1977–1982

    Article  CAS  PubMed  Google Scholar 

  8. Na K, Choi KM, Yaghi OM, Somorjai GA (2014) Nano Lett 14(10):5979–5983

    Article  CAS  PubMed  Google Scholar 

  9. IXamena FXL, Casanova O, Tailleur RG, Garcia H, Corma A (2008) J Catal 255(2):220–227

    Article  CAS  Google Scholar 

  10. Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R (2013) J Am Chem Soc 135(14):5328–5331

    Article  CAS  PubMed  Google Scholar 

  11. Xu H, Gao J, Jiang D (2015) Nat Chem 7:905–923

    Article  CAS  PubMed  Google Scholar 

  12. Rozhko E, Bavykina A, Osadchii D, Makkee M, Gascon J (2017) J Catal 345:270–280

    Article  CAS  Google Scholar 

  13. Zhang J, Peng Y, Leng W, Gao Y, Xu F, Chai J (2016) Chin J Catal 37(4):468–475

    Article  CAS  Google Scholar 

  14. Hariyanandam GG, Hyun D, Natarajan P, Jung K-D, Yoon S (2016) Catal Today 265:52–55

    Article  CAS  Google Scholar 

  15. Hou Y, Zhang X, Sun J, Lin S, Qi D, Hong R, Li D, Xiao X, Jiang J (2015) Microporous Mesoporous Mater 214:108–114

    Article  CAS  Google Scholar 

  16. Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y (2014) Angew Chem Int Ed 53(11):2878–2882

    Article  CAS  Google Scholar 

  17. Ding S-Y, Gao J, Wang Q, Zhang Y, Song W-G, Su C-Y, Wang W (2011) J Am Chem Soc 133(49):19816–19822

    Article  CAS  PubMed  Google Scholar 

  18. Gonçalves RSB, de Oliveira ABV, Sindra HC, Archanjo BS, Mendoza ME, Carneiro LSA, Buarque CD, Esteves PM (2016) ChemCatChem 8(4):743–750

    Article  CAS  Google Scholar 

  19. Medlock J, Bonrath W (2013) Angew Chem Int Ed 52(21):5435–5435

    Article  CAS  Google Scholar 

  20. Busacca CA, Fandrick DR, Song JJ, Senanayake CH (2012) Application of transition metal catalysis in drug discovery and development. Wiley, Hoboken, pp 1–24

    Book  Google Scholar 

  21. Shang R, Ilies L, Nakamura E (2017) Chem Rev 117(13):9086–9139

    Article  CAS  PubMed  Google Scholar 

  22. Fürstner A (2016) ACS Cent Sci 2(11):778–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bauer I, Knölker H-J (2015) Chem Rev 115(9):3170–3387

    Article  CAS  PubMed  Google Scholar 

  24. Huang Z, Jin L, Feng Y, Peng P, Yi H, Lei A (2013) Angew Chem Int Ed 52(28):7151–7155

    Article  CAS  Google Scholar 

  25. García Mancheño O (2011) Angew Chem Int Ed 50(10):2216–2218

    Article  CAS  Google Scholar 

  26. Plietker B, Dieskau A (2009) Eur J Org Chem 2009 6:775–787

    Article  CAS  Google Scholar 

  27. Bi H-P, Chen W-W, Liang Y-M, Li C-J (2009) Org Lett 11(15):3246–3249

    Article  CAS  PubMed  Google Scholar 

  28. Salanouve E, Bouzemame G, Blanchard S, Derat E, Desage-El Murr M, Fensterbank L (2014) Chem Eur J 20(16):4754–4761

    Article  CAS  PubMed  Google Scholar 

  29. Zhao J, Zhou W, Han J, Li G, Pan Y (2013) Tetrahedron Lett 54(48):6507–6510

    Article  CAS  Google Scholar 

  30. Oveisi AR, Zhang K, Khorramabadi-zad A, Farha OK, Hupp JT (2015) Sci Rep 5:10621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rouchet J-BEY., Hachem M, Schneider C, Hoarau C (2017) ACS Catal 7(8):5363–5369

    Article  CAS  Google Scholar 

  32. Yang Z, Chen X, Liu J, Gui Q, Xie K, Li M, Tan Z (2013) Chem Comm 49(15):1560–1562

    Article  CAS  PubMed  Google Scholar 

  33. Bi H-P, Zhao L, Liang Y-M, Li C-J (2009) Angew Chem Int Ed 48(4):792–795

    Article  CAS  Google Scholar 

  34. Perry GJP, Larrosa I (2017) Eur J Org Chem 2017 25:3517–3527

    Article  CAS  Google Scholar 

  35. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso AD, Gironcoli SD, Delugas P, DiStasio RA, Ferretti J, Floris A, Fratesi A, Fugallo G, Gebauer G, Gerstmann R, Giustino U, Gorni F, Jia T, Kawamura J, Ko M, Kokalj HY, Küçükbenli A, Lazzeri E, Marsili M, Marzari M, Mauri N, Nguyen F, Nguyen NL, Otero-de-la-Roza HV, Paulatto A, Poncé L, Rocca S, Sabatini D, Santra R, Schlipf B, Seitsonen M, Smogunov AP, Timrov A, Thonhauser I, Umari T, Vast P, Wu N, Baroni XS (2017) J Phys: Condens Matter 29(46):465901

    CAS  Google Scholar 

  36. Vanderbilt D (1990) Phys Rev B 41(11):7892–7895

    Article  CAS  Google Scholar 

  37. Sastre G, Corma A (2009) J Mol Catal A: Chem 305(1):3–7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is partly supported by CNPq, CAPES and FAPERJ. PME acknowledge INOMAT for support. We dedicate this manuscript to Prof. George A. Olah.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre M. Esteves or Camilla D. Buarque.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11244_2018_910_MOESM1_ESM.doc

Supplementary material 1. Detailed synthetic procedures, spectra of reaction products and extra material characterization. (DOC 5277 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cifuentes, J.M.C., Ferreira, B.X., Esteves, P.M. et al. Decarboxylative Cross-Coupling of Cinnamic Acids Catalyzed by Iron-Based Covalent Organic Frameworks. Top Catal 61, 689–698 (2018). https://doi.org/10.1007/s11244-018-0910-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0910-9

Keywords

Navigation