Skip to main content
Log in

‘‘Hydrogen-Free’’ Hydrogenation of Nitrobenzene Over Cu/SiO2 Via Coupling with 2-Butanol Dehydrogenation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The feasibility of a coupled reaction system for the simultaneous production of 2-butanone (from 2-butanol dehydrogenation) and aniline (from nitrobenzene hydrogenation) over Cu/SiO2 in continuous gas phase operation without an external H2 supply has been established. Two (15.9 and 1.8 % w/w) Cu/SiO2 catalysts were prepared by deposition–precipitation and characterised in terms of N2 physisorption, temperature programmed reduction (TPR), H2 chemisorption, powder XRD, STEM and XPS analysis. Following TPR, the higher Cu loading showed a wider particle size distribution (1–15 nm, mean 7.8 nm) than 1.8 % w/w Cu/SiO2 (1–6 nm, mean 3.1 nm), where the latter exhibited a modified electronic character based on XPS measurements and a (fourfold) higher H2 uptake capacity. The reactions showed antipathetic (dehydrogenation) and sympathetic (hydrogenation) structure sensitivity in terms of turnover frequency (TOF) dependence on Cu size. We have achieved, for the first time, 100 % yield to both target products (2-butanone and aniline) with appreciably (by a factor of 50) enhanced hydrogen utilisation in the coupled system relative to conventional nitrobenzene reduction using pressurised H2. Our results establish in situ hydrogen generation via catalytic dehydrogenation as a viable hydrogenation route to commercially important products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Irfan M, Glasnov TN, Kappe CO (2011) ChemSusChem 4:300

    Article  CAS  Google Scholar 

  2. Kothari R, Buddhi D, Sawhney RL (2008) Renew Sust Energ Rev 12:553

    Article  CAS  Google Scholar 

  3. Gkizis PL, Stratakis M, Lykakis IN (2013) Catal Commun 36:48

    Article  CAS  Google Scholar 

  4. Vasilikogiannaki E, Gryparis C, Kotzabasaki V, Lykakis IN, Stratakis M (2013) Adv Synth Catal 355:907

    Article  CAS  Google Scholar 

  5. Zheng C, You SL (2012) Chem Soc Rev 41:2498

    Article  CAS  Google Scholar 

  6. Alonso F, Riente P, Yus M (2011) Acc Chem Res 44:379

    Article  CAS  Google Scholar 

  7. Wang A, Yang Z, Liu J, Gui Q, Chen X, Tan Z, Shi J-C (2014) Synth Commun 44:280

    Article  CAS  Google Scholar 

  8. Malaika A, Kozlowski M (2011) Chem Eng J 171:1348

    Article  CAS  Google Scholar 

  9. Zhu YL, Yang J, Dong GQ, Zheng HY, Zhang HH, Xiang HW, Li YW (2005) Appl Catal B 57:183

    Article  CAS  Google Scholar 

  10. Nagaraja BM, Padmasri AH, Seetharamulu P, Reddy KHP, Raju BD, Rao KSR (2007) J Mol Catal A 278:29

    Article  CAS  Google Scholar 

  11. Nagaraja BM, Padmasri AH, Raju BD, Rao KSR (2011) Int J Hydrogen Energy 36:3417

    Article  CAS  Google Scholar 

  12. Climent MJ, Corma A, Hernandez JC, Hungría AB, Iborra S, Martínez-Silvestre S (2012) J Catal 292:118

    Article  CAS  Google Scholar 

  13. Zhang WG, Yu DH, Ji XJ, Huang H (2012) Green Chem 14:3441

    Article  CAS  Google Scholar 

  14. Keuler JN, Lorenzen L, Miachon S (2001) Appl Catal A 218:171

    Article  CAS  Google Scholar 

  15. Lambert S, Cellier C, Ferauche F, Gaigneaux EM, Heinrichs B (2007) Catal Commun 8:2032

    Article  CAS  Google Scholar 

  16. Fang D, Ren W, Liu Z, Xu X, Xu L, Lue H, Liao W, Zhang H (2009) J Nat Gas Chem 18:179

    Article  CAS  Google Scholar 

  17. Lambert S, Tcherkassova N, Cellier C, Ferauche F, Heinrichs B, Grange P, Pirard JP (2002) In: Gaigneaux E, DeVos DE, Grange P, Jacobs PA, Martens JA, Ruiz P, Poncelet G (eds) Scientific bases for the preparation of heterogeneous catalysts. Elsevier Science, Amsterdam

    Google Scholar 

  18. Keuler JN, Lorenzen L (2002) J Memb Sci 202:17

    Article  CAS  Google Scholar 

  19. Wang ZL, Ma HC, Zhu WC, Wang GJ (2002) React Kinet Catal Lett 76:271

    Article  CAS  Google Scholar 

  20. Blaser H-U, Steiner H, Studer M (2009) ChemCatChem 1:210

    Article  CAS  Google Scholar 

  21. Relvas J, Andrade R, Freire FG, Lemos F, Araujo P, Pinho MJ, Nunes CP, Ribeiro FR (2008) Catal Today 133:828

    Article  Google Scholar 

  22. Wang J, Yuan Z, Nie R, Hou Z, Zheng X (2010) Ind Eng Chem Res 49:4664

    Article  CAS  Google Scholar 

  23. Pérez MCM, de Lecea CSM, Solano AL (1997) Appl Catal A 151:461

    Article  Google Scholar 

  24. Torres GC, Jablonski EL, Baronetti GT, Castro AA, de Miguel SR, Scelza OA, Blanco MD, Jimenez MAP, Fierro JLG (1997) Appl Catal A 161:213

    Article  CAS  Google Scholar 

  25. Yang P, Zhang W, Du Y, Wang X (2006) J Mol Catal A 260:4

    Article  CAS  Google Scholar 

  26. Sangeetha P, Seetharamulu P, Shanthi K, Narayanan S, Rao KSR (2007) J Mol Catal A 273:244

    Article  CAS  Google Scholar 

  27. Willocq C, Dubois V, Khimyak YZ, Devillers M, Hermans S (2012) J Mol Catal A 365:172

    Article  CAS  Google Scholar 

  28. Huang Z, Cui F, Xue J, Zuo J, Chen J, Xia C (2012) Catal Today 183:42

    Article  CAS  Google Scholar 

  29. Guerreiro ED, Gorriz OF, Larsen G, Arrúa LA (2000) Appl Catal A 204:33

    Article  CAS  Google Scholar 

  30. Smith ML, Campos A, Spivey JJ (2012) Catal Today 182:60

    Article  CAS  Google Scholar 

  31. Grunwaldt JD, Molenbroek AM, Topsøe NY, Topsøe H, Clausen BS (2000) J Catal 194:452

    Article  CAS  Google Scholar 

  32. Chen CS, Cheng WH, Lin SS (2004) Appl Catal A 257:97

    Article  CAS  Google Scholar 

  33. Lambert S, Cellier C, Grange P, Pirard JP, Heinrichs B (2004) J Catal 221:335

    Article  CAS  Google Scholar 

  34. Chou SC, Yeh CT, Chang TH (1997) J Phys Chem B 101:5828

    Article  CAS  Google Scholar 

  35. Liu JJ, Zhang LL, Zhang JT, Liu T, Zhao XS (2013) Nanoscale 5:11044

    Article  CAS  Google Scholar 

  36. Jujjuri S, Ding E, Shore SG, Keane MA (2007) J Mol Catal A 272:96

    Article  CAS  Google Scholar 

  37. Murthy KV, Patterson PM, Jacobs G, Davis BH, Keane MA (2004) J Catal 223:74

    Article  CAS  Google Scholar 

  38. Sitthisa S, Resasco DE (2011) Catal Lett 141:784

    Article  CAS  Google Scholar 

  39. Subbaramaiah V, Srivastava VC, Mall ID (2013) AIChE J 59:2577

    Article  CAS  Google Scholar 

  40. Espinos JP, Morales J, Barranco A, Caballero A, Holgado JP, González-Elipe AR (2002) J Phys Chem B 106:6921

    Article  CAS  Google Scholar 

  41. Bagus PS, Ilton ES, Nelin CJ (2013) Surf Sci Rep 68:273

    Article  CAS  Google Scholar 

  42. Chen CS, Lin JH, Lai TW, Li BH (2009) J Catal 263:155

    Article  CAS  Google Scholar 

  43. Ferretti N, Balkaya B, Vollmer A, Neeb M, Eberhardt W (2007) J Electron Spectrosc 156:124

    Article  Google Scholar 

  44. Gong JL, Yue HR, Zhao YJ, Zhao S, Zhao L, Lv J, Wang SP, Ma XB (2012) J Am Chem Soc 134:13922

    Article  CAS  Google Scholar 

  45. Cárdenas-Lizana F, Bridier B, Shin CCK, Pérez-Ramirez J, Kiwi-Minsker L (2012) ChemCatChem 4:668

    Article  Google Scholar 

  46. Parker DH, Pettiettehall CL, Li YZ, McIver RT, Hemminger JC (1992) J Phys Chem 96:1888

    Article  CAS  Google Scholar 

  47. Cárdenas-Lizana F, Gómez-Quero S, Baddeley CJ, Keane MA (2010) Appl Catal A 387:155

    Article  Google Scholar 

  48. Fang D, Jiang X, Wang Z, Qiu Z, Zhang H (2011) Petrochem Tech 40:49

    CAS  Google Scholar 

  49. Fridman VZ, Davydov AA, Titievsky K (2004) J Catal 222:545

    Article  CAS  Google Scholar 

  50. Shimizu K, Kon K, Shimura K, Hakim S (2013) J Catal 300:242

    Article  CAS  Google Scholar 

  51. Kon K, Siddiki S, Shimizu KI (2013) J Catal 304:63

    Article  CAS  Google Scholar 

  52. Sun Z, Zhao Y, Xie Y, Tao R, Zhang H, Huang C, Liu Z (2010) Green Chem 12:1007

    Article  CAS  Google Scholar 

  53. Yadav GD, Mewada RK (2013) Chem Eng J 221:500

    Article  CAS  Google Scholar 

  54. Obraztsova II, Eremenko NK, Velyakina YN (2008) Kinet Catal 49:401

    Article  CAS  Google Scholar 

  55. Cubberley AH, Mueller MB (1946) J Am Chem Soc 68:1149

    Article  CAS  Google Scholar 

  56. Sawadjoon S, Lundstedt A, Samec JSM (2013) ACS Catal 3:635

    Article  CAS  Google Scholar 

  57. He J, Yamaguchi K, Mizuno N (2010) Chem Lett 39:1182

    Article  CAS  Google Scholar 

  58. Yamaguchi K, He J, Oishi T, Mizuno N (2010) Chem Eur J 16:7199

    Article  CAS  Google Scholar 

  59. Liu H, Chuah G-K, Jaenicke S (2012) J Catal 292:130

    Article  CAS  Google Scholar 

  60. Shimizu K, Imaiida N, Kon K, Siddiki S, Satsuma A (2013) ACS Catal 3:998

    Article  CAS  Google Scholar 

  61. Wang XD, Perret N, Keane MA (2012) Chem Eng J 210:103

    Article  CAS  Google Scholar 

  62. Torres C, Campos C, Fierro JLG, Oportus M, Reyes P (2013) Catal Lett 143:763

    Article  CAS  Google Scholar 

  63. Sun AL, Qin ZF, Wang JG (2002) Catal Lett 79:33

    Article  CAS  Google Scholar 

  64. Reddy KHP, Rahul R, Reddy SSV, Raju BD, Rao KSR (2009) Catal Commun 10:879

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. X. Wang for his contribution to this work. Financial support to M. Li and Y. Hao through the Overseas Research Students Award Scheme (ORSAS) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Keane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Hao, Y., Cárdenas-Lizana, F. et al. ‘‘Hydrogen-Free’’ Hydrogenation of Nitrobenzene Over Cu/SiO2 Via Coupling with 2-Butanol Dehydrogenation. Top Catal 58, 149–158 (2015). https://doi.org/10.1007/s11244-014-0354-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0354-9

Keywords

Navigation