Skip to main content
Log in

Synergy of Components in CuZnO and CuZnO/Al2O3 on Methanol Synthesis: Analysis at the Site Level by SSITKA

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the present study, the effects of the individual components and an Al2O3 support on CuZnO for methanol (MeOH) synthesis were investigated at the site level for the first time using steady-state isotopic transient kinetic analysis and reaction at 250 °C and 1.8 atm. The presence of ZnO was found to decrease the hydrocarbon (CH4 primarily) formation ability of Cu. By comparing the surface reaction parameters, it could be shown that Cu and ZnO catalysts (supported on Al2O3) exhibit lower MeOH formation rates compared to their combination in either CuZnO or CuZnO/Al2O3 due, especially, to lower intrinsic “site” activities. The synergy between Cu and ZnO was most obvious in the increase in MeOH TOFITK (a measure of site activity for MeOH formation), more than double that for Cu without ZnO. Al2O3 did not seem to impact MeOH synthesis in any way other than to increase dispersion of the CuZnO. However, it did furnish acid sites for the conversion of some MeOH to DME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pradhana S, Reddy AS, Devi RN, Chilukuri S (2009) Catal Today 141:72

    Article  Google Scholar 

  2. Sá S, Silva H, Brandão L, Sousa JM, Mendes A (2010) Appl Catal B 99:43

    Article  Google Scholar 

  3. Breen JP, Ross JRH (1999) Catal Today 51:521

    Article  CAS  Google Scholar 

  4. Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Appl Catal A 179:31

    Article  CAS  Google Scholar 

  5. Clarke DB, Bell AT (1995) J Catal 154:314

    Article  CAS  Google Scholar 

  6. Amenomiya Y (1987) Appl Catal 30:57

    Article  CAS  Google Scholar 

  7. Ghiotti G, Boccuzzi F (1987) Catal Rev 29:151

    Article  CAS  Google Scholar 

  8. Tijm PJA, Waller FJ, Brown DM (2001) Appl Catal A 221:275

    Article  CAS  Google Scholar 

  9. Burch R, Golunski SE (1990) J Chem Soc Faraday Trans 86:2683

    Article  Google Scholar 

  10. Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, Kobylinski TP (1979) J Catal 56:407

    Article  CAS  Google Scholar 

  11. Fujitani T, Saito M, Kanai Y, Kakumoto T, Watanabe T, Nakamura J, Uchijima T (1994) Catal Lett 25:271

    Article  CAS  Google Scholar 

  12. Burch R, Chappell RJ (1988) Appl Catal 45:131

    Article  CAS  Google Scholar 

  13. Kanai Y, Watanabe T, Fujitani T, Uchijima T, Nakamura J (1996) Catal Lett 38:157

    Article  Google Scholar 

  14. Fu Y, Hong T, Chen J, Auroux A, Shen J (2005) Thermochim Acta 434:22

    Article  CAS  Google Scholar 

  15. Mao D, Yang W, Xia J, Zhang B, Lu G (2006) J Mol Catal A 250:138

    Article  CAS  Google Scholar 

  16. Mao D, Yang W, Xia J, Zhang B, Song Q, Chen Q (2005) J Catal 230:140

    Article  CAS  Google Scholar 

  17. Klier K (1982) Adv Catal 31:243

    Article  CAS  Google Scholar 

  18. Waugh KC (1992) Catal Today 15:51

    Article  CAS  Google Scholar 

  19. Ponec V (1992) Surf Sci 272:111

    Article  CAS  Google Scholar 

  20. Kanai Y, Watanabe T, Fujitani T, Saito M, Nakamura J, Uchijima T (1994) Catal Lett 27:67

    Article  CAS  Google Scholar 

  21. Monnier JR, Hanrahan MJ, Apai G (1985) J Catal 92:119

    Article  CAS  Google Scholar 

  22. Chinchen GC, Waugh KC, Whan DA (1987) Appl Catal 30:333

    Article  CAS  Google Scholar 

  23. Yoshihara J, Campbell CT (1996) J Catal 161:776

    Article  CAS  Google Scholar 

  24. Pan WX, Cao R, Roberts DL, Griffin GL (1988) J Catal 114:440

    Article  CAS  Google Scholar 

  25. Burch R, Golunski SE, Spencer MS (1990) Catal Lett 5:55

    Article  CAS  Google Scholar 

  26. Ovesen CV, Clausen BS, Schiøtz J, Stoltze P, Topsøe H, Nørskov JK (1997) J Catal 168:133

    Article  CAS  Google Scholar 

  27. Choi Y, Futagami K, Fujitani T, Nakamura J (2001) Appl Catal A 208:163

    Article  CAS  Google Scholar 

  28. Grunwaldt J-D, Molenbroek AM, Topsøe N-Y, Topsøe H, Clausen BS (2000) J Catal 194:452

    Article  CAS  Google Scholar 

  29. Topsøe N-Y, Topsøe H (1999) Top Catal 8:267

    Article  Google Scholar 

  30. Clausen BS, Schiøtz J, Gråbæk L, Ovesen CV, Jacobsen KW, Nørskov JK, Topsøe H (1994) Top Catal 1:367

    Article  CAS  Google Scholar 

  31. Fujitani T, Nakamura J (2000) Appl Catal A 191:111

    Article  CAS  Google Scholar 

  32. Spencer MS (1998) Catal Lett 50:37

    Article  CAS  Google Scholar 

  33. Słoczyński J, Grabowski R, Olszewski P, Kozłowska A, Stoch J, Lachowska M, Skrzypek J (2006) Appl Catal A 310:127

    Article  Google Scholar 

  34. Yang C, Ma Z, Zhao N, Wei W, Hu T, Sun Y (2006) Catal Today 115:222

    Article  CAS  Google Scholar 

  35. Wang L, Ding W, Liu Y, Fang W, Yang Y (2010) J Nat Gas Chem 19:487

    Article  CAS  Google Scholar 

  36. Shishido T, Yamamoto Y, Morioka H, Takaki K, Takehira K (2004) Appl Catal A 263:249

    Article  CAS  Google Scholar 

  37. Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R (2007) Angew Chem Int Ed 46:7324

    Article  CAS  Google Scholar 

  38. Lee S (1989) Methanol synthesis technology. CRC Press, Boca Raton, p 3

    Google Scholar 

  39. Vesborg PCK, Chorkendorff I, Knudsen I, Balmes O, Nerlov J, Molenbroek AM, Clausen BS, Helveg S (2009) J Catal 262:65

    Article  CAS  Google Scholar 

  40. Shannon SL, Goodwin JG Jr (1995) Chem Rev 95:677

    Article  CAS  Google Scholar 

  41. Goodwin JG Jr, Kim S, Rhodes WD (2004) In: Spivey JJ (ed) Catalysis, vol 17, chap 8. The Royal Society of Chemistry, Cambridge

  42. Ma Y, Sun Q, Wu D, Fan W-H, Zhang Y-L, Fa Deng J-F (1998) Appl Catal A 171:45

    Article  CAS  Google Scholar 

  43. Kiener C, Kurtz M, Wilmer H, Hoffmann C, Schmidt H-W, Grunwaldt J-D, Muhler M, Schüth F (2003) J Catal 216:110

    Article  CAS  Google Scholar 

  44. Ali SH, Goodwin JG Jr (1998) J Catal 176:3

    Article  CAS  Google Scholar 

  45. Wang X, Zhang H, Li W (2010) Korean J Chem Eng 27:1093

    Article  CAS  Google Scholar 

  46. Grabow LC, Mavrikakis M (2011) ACS Catal 1:365

    Article  CAS  Google Scholar 

  47. Mo X, Tsai Y-T, Gao J, Mao D, Goodwin JG Jr (2012) J Catal 285:208

  48. Tsai Y-T, Mo X, Goodwin JG Jr (2012) J Catal 285:242

    Google Scholar 

  49. Hinrichsen O, Genger T, Muhler M (2000) Chem Eng Technol 23:956

    Article  CAS  Google Scholar 

  50. Tsai Y-T, Goodwin JG Jr (2011) J Catal 281:128

    Article  CAS  Google Scholar 

  51. Barroso MN, Gomez MF, Gamboa JA, Arrúa LA, Abello MC (2006) J Phys Chem Solids 67:1583

    Article  CAS  Google Scholar 

  52. Jones SD, Neal LM, Hagelin-Weaver HE (2008) Appl Catal B 84:631

    Article  CAS  Google Scholar 

  53. Strohmeier BR, Levden DE, Field RS, Hercules DM (1985) J Catal 94:514

    Article  CAS  Google Scholar 

  54. Meyer F, Hempelmann R, Mathur S, Veith M (1999) J Mater Chem 9:1755

    Article  CAS  Google Scholar 

  55. Lee JS, Lee KH, Lee SY, Kim YG (1993) J Catal 144:414

    Article  CAS  Google Scholar 

  56. Meitzner G, Iglesia E (1999) Catal Today 53:433

    Article  CAS  Google Scholar 

  57. Matsushima T, White JM (1976) J Catal 44:183

    Article  CAS  Google Scholar 

  58. Ali SH, Goodwin JG Jr (1997) J Catal 171:333

    Article  CAS  Google Scholar 

  59. Ali SH, Goodwin JG Jr (1997) J Catal 170:265

    Article  CAS  Google Scholar 

  60. Ali SH, Goodwin JG Jr (1997) J Catal 171:339

    Article  CAS  Google Scholar 

  61. Gao J, Mo X, Goodwin JG Jr (2010) J Catal 275:211

    Article  CAS  Google Scholar 

  62. Vada S, Goodwin JG Jr (1995) J Phys Chem 99:9479

    Article  CAS  Google Scholar 

  63. Liu X-M, Lu GQ, Yan Z-F, Beltramini J (2003) Ind Eng Chem Res 42:6518

    Article  CAS  Google Scholar 

  64. Sun Q, Zhang Y-L, Chen H-Y, Deng J-F, Wu D, Chen S-Y (1997) J Catal 167:92

    Article  CAS  Google Scholar 

  65. Guo X, Mao D, Lu G, Wang S, Wu G (2010) J Catal 271:178

    Article  CAS  Google Scholar 

  66. Anderson JR (1975) Structure of metallic catalysis, chap 2. Academic Press, London

  67. Hu Z, Dong J, Chen S, Peng S, Colloid Interf J (1997) Science 194:332

    CAS  Google Scholar 

  68. Ovesen CV, Clausen BS, Hammershøi BS, Steffensen G, Askgaard T, Chorkendorff I, Nørskov JK, Rasmussen PB, Stoltze P, Taylor P (1996) J Catal 158:170

    Article  CAS  Google Scholar 

  69. d’Alnoncourt RN, Kurtz M, Wilmer H, Löffler E, Hagen V, Shen J, Muhler M (2003) J Catal 220:249

    Article  Google Scholar 

  70. Topsøe N-Y, Topsøe H (1999) J Mol Catal A 141:95

    Article  Google Scholar 

  71. Chinchen GC, Waugh KC, Whan DA (1986) Appl Catal 25:101

    Article  CAS  Google Scholar 

  72. Yang R, Yu X, Zhang Y, Li W, Tsubaki N (2008) Fuel 87:443

    Article  CAS  Google Scholar 

  73. Nakamura J, Choi Y, Fujitani T (2003) Top Catal 22:277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the US Department of Energy (Award No. DE-PS26-06NT43024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Goodwin Jr..

Additional information

Special Issue in Honor of Laszlo Guczi’s 80th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, YT., Mo, X. & Goodwin, J.G. Synergy of Components in CuZnO and CuZnO/Al2O3 on Methanol Synthesis: Analysis at the Site Level by SSITKA. Top Catal 55, 757–770 (2012). https://doi.org/10.1007/s11244-012-9863-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9863-6

Keywords

Navigation