Skip to main content
Log in

Syntheses, crystal structures and photocatalytic properties of transition metal complexes based on 9,10-anthraquinone-1,3-dicarboxylate

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Five transition metal complexes based on the ligand 9,10-anthraquinone-1,3-dicarboxylate acid (1,3-H2AQDC) have been synthesized and characterized by physico-chemical and spectroscopic methods. Single-crystal analyses show that the complexes {Mn(1,3-AQDC)(H2O)4·(H2O)}n, {Zn(1,3-AQDC)(H2O)4·(H2O)}n, {Ni(1,3-AQDC)(4,4′-bpy)(H2O)2(CH3OH)}n and {Co(1,3-AQDC)(4,4′-bpy)(H2O)2(CH3OH)}n (4,4′-bpy = 4,4′-bipyridine) comprise one-dimensional (1D) chains in their crystal structures, while [Ni(1,3-AQDC)(H2O)4·(H2O)3]2 bears dimeric units, and these secondary building units are further linked by hydrogen bonding to form three-dimensional structures. These compounds proved to be able to catalyze visible-light-driven air-oxidation reactions of diarylethyne into diketones under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li JR, Kuppler RJ, Zhou HC (2009) Chem Soc Rev 38:1477–1504

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY (2014) Chem Soc Rev 43:6011–6061

    Article  CAS  PubMed  Google Scholar 

  3. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38:1450–1459

    Article  CAS  PubMed  Google Scholar 

  4. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Chem Rev 112:1105–1125

    Article  CAS  PubMed  Google Scholar 

  5. Hu FL, Shi YX, Chen HH, Lang JP (2015) Dalton Trans 44:18795–18803

    Article  CAS  PubMed  Google Scholar 

  6. Yan WH, Bao SS, Huang J, Ren M, Sheng XL, Cai ZS, Lu CS, Meng QJ, Zheng LM (2013) Dalton Trans 42:8241–8248

    Article  CAS  PubMed  Google Scholar 

  7. Gui B, Meng X, Chen Y, Tian J, Liu G, Shen C, Zeller M, Yuan D, Wang C (2015) Chem Mater 27:6426–6431

    Article  CAS  Google Scholar 

  8. Islamoglu T, Goswami S, Li Z, Howarth AJ, Farha OK, Hupp JT (2017) Acc Chem Res 50:805–813

    Article  CAS  PubMed  Google Scholar 

  9. Lu W, Wei Z, Gu ZY, Liu TF, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle T III, Bosch M, Zhou HC (2014) Chem Soc Rev 43:5561–5593

    Article  CAS  PubMed  Google Scholar 

  10. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  11. DeRosa M (2002) Coord Chem Rev 233–234:351–371

    Article  Google Scholar 

  12. Huynh MT, Anson CW, Cavell AC, Stahl SS, Hammes-Schiffer S (2016) J Am Chem Soc 138:15903–15910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feher G, Allen JP, Okamura MY, Rees DC (1989) Nature 339:111–116

    Article  CAS  Google Scholar 

  14. Ye CP, Xu G, Wang Z, Han J, Xue L, Cao FY, Zhang Q, Yang LF, Lin LZ, Chen XD (2018) Dalton Trans 47:6470–6478

    Article  CAS  PubMed  Google Scholar 

  15. Gao A, Yang F, Li J, Wu Y (2012) Tetrahedron 68:4950–4954

    Article  CAS  Google Scholar 

  16. Muzart J (2011) J Mol Catal A Chem 338:7–17

    CAS  Google Scholar 

  17. Xu CF, Xu M, Jia YX, Li CY (2011) Org Lett 13:1556–1559

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Liu Z, Shi E, Chen L, Wei W, Li H, Cheng Y, Wan X (2011) Org Lett 13:2274–2277

    Article  CAS  PubMed  Google Scholar 

  19. Xu Y, Wan X (2013) Tetrahedron Lett 54:642–645

    Article  CAS  Google Scholar 

  20. Xu N, Gu D-W, Dong Y-S, Yi F-P, Cai L, Wu X-Y, Guo X-X (2015) Tetrahedron Lett 56:1517–1519

    Article  CAS  Google Scholar 

  21. Liu X, Cong T, Liu P, Sun P (2016) J Org Chem 81:7256–7261

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, He R, Wang F, Lu C, Meng Q (2010) Inorg Chem Commun 13:1375–1379

    Article  CAS  Google Scholar 

  23. Bruker AV (2008) Bruker AXS Inc. Madison, Wisconsin

    Google Scholar 

  24. Sheldrick GM (2015) Acta Crystallogr A Found Adv 71:3–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheldrick GM (2015) Acta Crystallogr C Struct Chem 71:3–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21671104), Jiangsu Key Technology R&D Program (BE2016010 and BE2016010-1), Natural Science Foundation of Jiangsu Higher Education Institutions of China (17KJA430010 and 15KJA350002) and the Priority Academic Program Development of Jiangsu Higher Educational Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Han or Xu-Dong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, CP., Ling, R., Yang, LF. et al. Syntheses, crystal structures and photocatalytic properties of transition metal complexes based on 9,10-anthraquinone-1,3-dicarboxylate. Transit Met Chem 44, 475–482 (2019). https://doi.org/10.1007/s11243-019-00334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00334-2

Navigation