Skip to main content
Log in

The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A proficient and reliable in vitro plant regeneration protocol was established for pea by utilizing cotyledonary node as an explants, which excised from 3-days old imbibed seeds. The present research work explains the positive role of polyamines (PAs) accompanied by plant growth regulators (PGRs) on the multiple shoot induction and rooting in pea plant regeneration. The highest multiple shoots (65.1 shoots/explant) was attained from the cotyledonary node explant on Murashige and Skoog (MS) medium accompanied with 20 mg l−1 spermidine (SPD) along with 1.5 mg l−1 6-benzyladenine (BA). Moreover, the highest elongation of multiplied shoots (10 cm length/shoot) was noted on MS medium enriched with 1 mg l−1 of gibberellic acid (GA3). The elongated shoots produced the highest number of roots (33.66 roots/shoot) on MS medium augmented with 30 mg l−1 putrescine (PUT) along with 0.6 mg l−1 1-naphthaleneacetic acid (NAA). Rooted plants were hardened and acclimatized in the greenhouse with an existence rate of 98%. The standardized procedure with the use of PAs has enhanced the multiple shoot induction to threefold higher than the plants raised from PGRs treatments. The regenerated pea plants revealed the fivefold enhanced photosynthetic pigment, twofold enhanced antioxidant profile and the substantial growth in chloroplast count have been achieved in optimized SPD and BA supplemented MS medium compared to control plant. Start Codon Targeted polymorphism and Random Amplified Polymorphic DNA molecular markers recognized the genetic purity of the in vitro regenerated pea plants for their true type of nature.

Key message

An enhanced and consistence in vitro regeneration protocol was established for pea, by the application of polyamines along with PGRs, which significantly improved the multiple shooting, shoot elongation, rooting, total chlorophyll and antioxidant profile of regenerated plants, further not hampering their genetic fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PAs:

Polyamines

PGRs:

Plant growth regulators

BA:

6-Benzyladenine

TDZ:

Thidiazuron

KIN:

Kinetin

GA3 :

Gibberellic acid

NAA:

1-Naphthaleneacetic acid

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

SPD:

Spermidine

SPM:

Spermine

PUT:

Putrescine

SCoT:

Start Codon Targeted polymorphism

RAPD:

Random Amplified Polymorphic DNA

References

  • Agarwal T, Gupta AK, Patel AK, Shekhawat NS (2015) Micropropagation and validation of genetic homogeneity of Alhagi maurorum using SCoT, ISSR and RAPD markers. Plant Cell Tissue Organ Cult 120:313–323

    CAS  Google Scholar 

  • Amirmoradi B, Talebi R, Karami E (2012) Comparison of genetic variation and differentiation among annual Cicer species using start codon targeted (SCoT) polymorphism, DAMD-PCR, and ISSR markers. Plant Syst Evol 298:1679–1688

    CAS  Google Scholar 

  • Aremu AO, Bairu MW, Szüčová L, Finnie JF, Van Staden J (2012) The role of meta-topolins on the photosynthetic pigment profiles and foliar structures of micropropagated ‘Williams’ bananas. J Plant Physiol 169:1530–1541

    CAS  PubMed  Google Scholar 

  • Arun M, Subramanyam K, Theboral J, Ganapathi A, Manickavasagam M (2014) Optimized shoot regeneration for Indian soybean: the influence of exogenous polyamines. Plant Cell Tissue Organ Cult 117:305–309

    CAS  Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709

    CAS  PubMed  Google Scholar 

  • Bean SJ, Gooding PS, Mullineaux PM, Davies JL (1997) A simple system for pea transformation. Plant Cell Rep 16:513–519

    PubMed  Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189(2):201–206

    CAS  Google Scholar 

  • Bhojwani S, Dantu P (2013) Somaclonal variation. In: Plant tissue culture: an introductory text, India, Springer, pp 141–142

    Google Scholar 

  • Casey R, Davies DR (1993) Peas: genetics, molecular biology and biotechnology. CAB International, Wallingford, pp 1–60

    Google Scholar 

  • Christou P (1997) Biotechnology applied to grain legumes. Field Crop Res 53:83–97. https://doi.org/10.1016/S0378-4290(97)00024-5

    Article  Google Scholar 

  • Çiftçi CY, Türkan AD, Khawar KM et al (2006) Use of gamma rays to induce mutations in four pea (Pisum sativum L.) cultivars. Turkish J Biol 30:29–37

    Google Scholar 

  • Cohen AS, Popovic RB, Zalik S (1979) Effects of polyamines on chlorophyll and protein content, photochemical activity, and chloroplast ultrastructure of barley leaf discs during senescence. Plant Physiol 64:717–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93

    CAS  Google Scholar 

  • Couée I, Hummel I, Sulmon C, Gouesbet G, El Amrani A (2004) Involvement of polyamines in root development. Plant Cell Tissue Organ Culture 76(1):1–10

    Google Scholar 

  • Das A, Kumar S, Nandeesha P, Yadav IS, Saini J, Chaturvedi SK, Datta S (2014) An efficient in vitro regeneration system of fieldpea (Pisum sativum L.) via. shoot organogenesis. J Plant Biochem Biotechnol 23:184–189

    CAS  Google Scholar 

  • Di R, Purcell V, Collins GB, Ghabrial SA (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15:746–750

    CAS  PubMed  Google Scholar 

  • Drolet G, Dumbroff EB, Legge RL, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371

    CAS  Google Scholar 

  • Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606

    CAS  PubMed  Google Scholar 

  • Durieu P, Ochatt SJ (2000) Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot 51:1237–1242

    CAS  PubMed  Google Scholar 

  • El Ghachtouli N, Martin-Tanguy J, Paynot M, Gianinazzi S (1996) First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett 358:189–192

    Google Scholar 

  • Espósito MA, Almirón P, Gatti I, Cravero VP, López Anido FS, Cointry EL (2012) A rapid method to increase the number of F1 plants in pea (Pisum sativum) breeding programs. Genet Mol Res 11:2729–2732

    PubMed  Google Scholar 

  • Galston AW, Kaur-Sawhney R, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    CAS  Google Scholar 

  • Geneve RL, Hackett WP (1990) Ethylene evolution and endogenous polyamine levels during adventitious root formation in English ivy. Curr Topics Plant Physiol 5:332–334

    Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griga M, Novák FJ (1990) Pea (Pisum sativum L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Legumes and oil seed crops, vol 10. Springer, Berlin, pp 65–99

    Google Scholar 

  • Griga M, Tejklova E, Nova FJ, Kubalakova M (1986) In vitro clonal propagation of Pisum sativum L. Plant Cell Tissue Organ Cult 6:95–104

    CAS  Google Scholar 

  • Guo DL, Zhang JY, Liu CH (2012) Genetic diversity in some grape varieties revealed by SCoT analyses. Mol Biol Rep 39:5307–5313

    CAS  PubMed  Google Scholar 

  • Hamidi H, Talebi R, Keshavarzi F (2014) Comparative efficiency of functional gene-based markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP) with ISSR markers for diagnostic fingerprinting in wheat (Triticum aestivum L.). Cereal Res Commun 42:558–567

    CAS  Google Scholar 

  • He L, Nada K, Kasukabe Y, Tachibana S (2002) Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant Cell Physiol 43:196–206

    CAS  PubMed  Google Scholar 

  • Hu L, Xiang L, Zhang L, Zhou X, Zou Z, Hu X (2014) The photoprotective role of spermidine in tomato seedlings under salinity-alkalinity stress. PLoS ONE 9:110855

    Google Scholar 

  • Jackson JA, Hobbs SLA (1990) Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.). In Vitro Cell Dev Biol 26:835–838

    CAS  Google Scholar 

  • Jasin´ska Z, Kotecki A (1993) Ros´liny stra˛czkowe. WN PWN

  • Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK (2004) Antioxidant activities of flavidin in different in vitro model systems. Bioorg Med Chem 12:5141–5146

    CAS  Google Scholar 

  • Jordan MC, Hobbs SLA (1993) Evaluation of a cotyledonary node regeneration system for Agrobacterium-mediated transformation of pea (Pisum sativum). In Vitro Cell Dev Biol 29P:77–82

    Google Scholar 

  • Kakkar RK, Nagar PK (1996) Polyamines and senescence of maintenance foliage of tea Camellia sinensis L. Biol Plant 38:153–157

    CAS  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants—a changing perspective. Physiol Plant 116:281–292

    CAS  Google Scholar 

  • Kaur-Sawhney R, Galston AW (1979) Interaction of polyamines and light on biochemical processes involved in leaf senescence. Plant Cell Environ 2:189–196

    Google Scholar 

  • Kuhen GD, Phillips GC (2005) Role of polyamines in apoptosis and other recent advances in plant polyamines. Crit Rev Plant Sci 24:123–130

    Google Scholar 

  • Lee MM, Lee SH, Park KY (1997) Characterization and expression of two members of the S-adenosylmethionine decarboxylase gene family in carnation flower. Plant Mol Biol 34:371–382

    CAS  PubMed  Google Scholar 

  • Malik KA, Saxena PK (1992) Thidiazuron induces high frequency shoot regeneration in intact seedlings of Pea (Pisum sativum) and lentil (Lens culinaris). Aust J Plant Physiol 19:731–740

    CAS  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nauerby B, Madsen M, Christiansen J, Wyndaele R (1991) A rapid and efficient regeneration system for pea (Pisum sativum), suitable for transformation. Plant Cell Rep 9:676–679

    CAS  PubMed  Google Scholar 

  • Ochatt SJ (2011) Immature seeds and embryos of Medicago truncatula cultured in vitro. Methods Mol Biol 710:39–52

    CAS  PubMed  Google Scholar 

  • Ochatt SJ, Pontécaille C, Rancillac M (2000) The growth regulators used for bud regeneration and shoot rooting affect the competence for flowering and seed set in regenerated plants of protein pea. In Vitro Cell Dev Biol Plants 36:188–193

    CAS  Google Scholar 

  • Ochatt SJ, Atif RM, Patat-Ochatt EM, Jacas L, Conreux C (2010) Competence versus recalcitrance for in vitro regeneration. Not Bot Hort Agrobot Cluj 38(2):102–108

    Google Scholar 

  • Ochatt S, Conreux C, Mcolo RM, Despierre G, Magnin-Robert J, Raffiot B (2018) Phytosulfokine-alpha, an enhancer of in vitro regeneration competence in recalcitrant legumes. Plant Cell Tissue Org Cult 135:189–201

    CAS  Google Scholar 

  • Özcan S, Barghchi M, Firek S, Draper J (1993) Efficient adventitious shoot regeneration and somatic embryogenesis in pea. Plant Cell Tissue Org Cult 34:271–277

    Google Scholar 

  • Pavek PLS (2012) Plant guide for pea (Pisum sativum L). USDA-Natural Resources Conservation Service, Pullman, WA, pp 1–6

    Google Scholar 

  • Pjon CJ, Kim SD, Pak JY (1990) Effects of spermidine on chlorophyll content, photosynthetic activity and chloroplast ultrastructure in the dark and under light. Bot Mag Tokyo 103:43–48

    CAS  Google Scholar 

  • Plačková L, Hrdlička J, Smýkalová I, Cvečková M, Novák O, Griga M, Doležal K (2015) Cytokinin profiling of long-term in vitro pea (Pisum sativum L.) shoot cultures. Plant Growth Regul 77:125–132

    Google Scholar 

  • Pniewski T, Kapusta J (2005) Efficiency of transformation of Polish cultivars of pea (Pisum sativum L.) with various regeneration capacity by using hypervirulent Agrobacterium tumefaciens strains. J Appl Genet 46:139–147

    PubMed  Google Scholar 

  • Puonti-Kaerlas J, Eriksson T, Engström P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theor Appl Genet 80:246–252

    CAS  PubMed  Google Scholar 

  • Samec P, Našinec V (1996) The use of RAPD technique for the identification and classification of Pisum sativum L. genotypes. Euphytica 89:229–234

    CAS  Google Scholar 

  • Sathish D, Vasudevan V, Theboral J, Elayaraja D, Appunu C, Siva R, Manickavasagam M (2018) Efficient direct plant regeneration from immature leaf roll explants of sugarcane (Saccharum officinarum L.) using polyamines and assessment of genetic fidelity by SCoT markers. In Vitro Cell Dev Biol Plant 54:399–412

    CAS  Google Scholar 

  • Scowcroft WR, Ryan SA (1986) Tissue culture and plant breeding. In Yeoman MM (ed) Plant cell culture technology Blackwell Scientific, Oxford, pp 29–58

  • Shen Q, Zhang B, Xu R, Wang Y, Ding X, Li P (2010) Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01. Anaerobe 16:380–386

    CAS  PubMed  Google Scholar 

  • Shu S, Guo SR, Sun J, Yuan LY (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plant 146:285–296

    CAS  PubMed  Google Scholar 

  • Shu S, Yuan LY, Guo SR, Sun J, Yuan YH (2013) Effects of exogenous spermine on chlorophyll fluorescence; antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol Biochem 63:209–216

    CAS  PubMed  Google Scholar 

  • Singh SR, Dalal S, Singh R, Dhawan AK, Kalia RK (2013) Evaluation of genetic fidelity of in vitro raised plants of Dendrocalamus asper (Shult. & Shult. F.) Backer ex K. Heyne using DNA-based markers. Acta Physiol Plant 35:419–430

    CAS  Google Scholar 

  • Sivanandhan G, Mariashibu TS, Arun M, Rajesh M, Kasthurirengan S, Selvaraj N, Ganapathi A (2011) The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L.) Dunal and content of some with anolides in obtained plants. Acta Physiol Plant 33:2279–2288

    CAS  Google Scholar 

  • Smýkal P (2014) Pea (Pisum sativum L.) in biology prior and after Mendel’s discovery. Czech J Genet Plant Breed 50:52–64

    Google Scholar 

  • Smýkal P, Valledor L, Rodríguez R, Griga M (2007) Assessment of genetic and epigenetic stability in long-term in vitro culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998

    PubMed  Google Scholar 

  • Sonawane LL, Nirmal SA, Dhasade VV, Rub RA, Mandal SC (2010) Antioxidant effect of Tephrosia purpurea L. roots. Int J Pharm Sci Res 1(5):57–60

    Google Scholar 

  • Supe U, Roymon MG (2011) Micropropagation of radiated seeds of Pisum sativum. Indian J Fundam Appl Life Sci 1:203–208

    Google Scholar 

  • Tayeh N, Aubert G, Pilet-Nayel M-L, Lejeune-Hénaut I, Warkentin TD, Burstin J (2015) Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci 6:1037

    PubMed  PubMed Central  Google Scholar 

  • Thiruvengadam M, Chung IM (2015) Phenolic compound production and biological activities from in vitro regenerated plants of gherkin (Cucumis anguria L.). Electron J Biotechnol 18:295–301

    CAS  Google Scholar 

  • Tiburcio AF, Besford RT, Capell T, Borrel A, Testillano PS, Risueño MC (1994) Mechanisms of polyamine action during senescence responses induced by osmotic stress. J Exp Bot 45:235–269

    Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T et al (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    CAS  PubMed  Google Scholar 

  • Türkan AD, Khawar KM, Özcan CY, Ciftici S (2006) Effects of mutagenic sodium azide (NaN 3) on in vitro development of four Pea (Pisum sativum L.) cultivars. Int J Agric Biol 3:349–353

    Google Scholar 

  • Tzitzikas EN, Bergervoet M, Raemakers K, Vincken JP, Lammeren AV, Visser RGF (2004) Regeneration of Pea (Pisum sativum L.) by a cyclic organogenic system. Plant Cell Rep 23:453–460

    CAS  PubMed  Google Scholar 

  • Vasudevan A, Selvaraj N, Ganapathi A, Kasthurirengan S, Ramesh Anbazhagan V, Manickavasagam M, Choi C (2008) Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativusl.). In Vitro Cell Dev Biol Plant 44(4):300–306

    CAS  Google Scholar 

  • Vasudevan V, Subramanyam K, Elayaraja D, Karthik S, Vasudevan A, Manickavasagam M (2017) Assessment of the efficacy of amino acids and polyamines on regeneration of watermelon (Citrullus lanatus Thunb.) and analysis of genetic fidelity of regenerated plants by SCoT and RAPD markers. Plant Cell Tissue Org Cult 130:681–687

    CAS  Google Scholar 

  • Venkatachalam L, Bhagyalakshmi N (2008) Spermine induced morphogenesis and effect of partial immersion system on the shoot cultures of banana. Appl Biochem Biotechnol 151:502–511

    CAS  PubMed  Google Scholar 

  • Yamasaki H (2005) The NO world for plants: achieving balance in an open system. Plant Cell Environ 28:78–84

    CAS  Google Scholar 

  • Zhang RH, Li J, Guo SR, Tezuka T (2009) Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth Res 100:155–162

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author is thankful to the University Grants Commission, India for the award of Rajiv Gandhi National Fellowship (F1-17.1/2016-17-SC-TA,-3517/SA-III/Website-Date: 01.09.2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markandan Manickavasagam.

Additional information

Communicated by Sergio J. Ochatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajithan, C., Vasudevan, V., Sathish, D. et al. The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell Tiss Organ Cult 139, 547–561 (2019). https://doi.org/10.1007/s11240-019-01699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01699-z

Keywords

Navigation