Skip to main content
Log in

Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Pinus radiata is the most important conifer species for commercial forestry in countries such as Australia, New Zeeland and Chile. Nowadays, SE (somatic embryogenesis) is considered the most promising in vitro method for large scale vegetative propagation of woody plants. The understanding of the molecular basis of SE is in its very beginning and a number of embryogenesis-related genes have been identified in conifers. Among the molecular mechanisms involved in regulation of SE, DNA methylation, which is an epigenetic modification associated with transcriptional silencing, has shown to be a pivotal factor controlling gene expression. In this work, we studied the morphological and molecular differences between cell lines previously characterized in terms of their embryogenic potential as embryogenic (E) and non embryogenic (NE), obtained from immature zygotic embryos of P. radiata. In contrast to E lines, NE lines were composed of multicellular aggregates lacking polarity, and they were characterized by the presence of significantly lower transcript levels of embryogenesis-related genes and higher global DNA methylation. Furthermore, the detection of vibrational markers of DNA conformation indicated that DNA samples obtained from E lines presented the common B-DNA conformation, while NE samples presented Z-conformation. Taken together, our results highlight the role of epigenetic mechanisms such as DNA methylation in regulating the expression of embryogenesis- related genes, having impact on the embryo patterning and cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altamura M, Della Rovere F, Fattorini L, D’angeli S, Falasca G (2016) Recent advances on genetic and physiological bases on in vitro somatic embryo formation. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer Science + Business Media, New York, pp 47–85

    Chapter  Google Scholar 

  • Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46:559–568

    Article  CAS  PubMed  Google Scholar 

  • Banyay M, Sarkar M, Graslund A (2003) A library of IR bands of nucleic acids in solution. Biophys Chem 104:477–488

    Article  CAS  PubMed  Google Scholar 

  • Bishop-Hurley S, Gardner R, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tissue Org Cult 74:267–281

    Article  CAS  Google Scholar 

  • Bothe JR, Lowenhaupt K, Al-Hashimi HM (2012) Incorporation of CC steps into Z-DNA: interplay between B-Z junction and Z-DNA helical formation. BioChemistry 51:6871–6879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutilier K, Offringa R, Sharma V, Kieft H, Ouellet T, Zhang L et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Causevic A, Delaunay A, Ounnar S, Righezza M, Delmotte F, Brignolas F et al (2005) DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugar beet cell lines. Plant Physiol Biochem 43:681–691

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • de Vega-Bartol JJ, Santos RR, Simões M, Miguel CM (2013) Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies. Plant Cell Rep 32:715–729

    Article  CAS  PubMed  Google Scholar 

  • De la Peña C, Nic-can G, Galaz-Avalos R, Avilez-Montalvo R, Loyola V (2015) The role of chromatin modifications in somatic embryogenesis in plants. Front Plant Sci 6:635

    Google Scholar 

  • Feher A, Pasternak T, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org Cult 74:201–228

    Article  CAS  Google Scholar 

  • Filonova L, Bozhkov P, von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264

    Article  CAS  PubMed  Google Scholar 

  • Fraga H, Vieira L, Heringer A, Puttkammer C, Silveira V, Guerra M (2016) DNA methylation and proteome profiles of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures as affected by plant growth regulators supplementation. Plant Cell Org Tissue Cult 125:353–374

    Article  CAS  Google Scholar 

  • Gangappa SN, Srivastava AK, Maurya JP, Ram H, Chattopadhyay S (2013) Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development. Mol Plant 6:1758–1768

    Article  CAS  PubMed  Google Scholar 

  • Hand M, de Vries S, Koltunow A (2016) A comparison of in vitro and in vivo asexual embryogenesis. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer Science + Business Media, New York, pp 3–23

    Chapter  Google Scholar 

  • Hargreaves C, Reeves C, Find J, Gough K, Josekutty P, Skudder D et al (2009) Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation. Can J For Res 39:1566–1574

    Article  Google Scholar 

  • Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM et al (2010) The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humánez A, Blasco M, Brisa C, Segura J, Arrillaga I (2012) Somatic embryogenesis from different tissue of Spanish populations of maritime pine. Plant Cell Tiss Org Cult 111:373–383

    Article  Google Scholar 

  • Karami O, Aghavaisi B, Mahmoudi A (2009) Molecular aspects of somatic-to-embryo transition in plants. J Chem Biol 2:177–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimaszewska K, Noceda C, Pelletier G, Label P, Rodriguez R, Lelu-Walter MA (2009) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell Dev Biol Plant 45:20–33

    Article  Google Scholar 

  • Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge R (2010) Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP2A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Rep 29:723–734

    Article  CAS  PubMed  Google Scholar 

  • Klimaszewska K, Overton C, Stewart D, Rutledge R (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233:635–647

    Article  CAS  PubMed  Google Scholar 

  • Lambé P, Nkung H, Fouché JG, Deltour R, Foidrt JM, Gaspar T (1997) DNA methylation as key process in regulation of organogenic totipotency and plant neoplastic progression? In Vitro Cell Dev Biol Plant 33:155–162

    Article  Google Scholar 

  • Lelu-Walter MA, Klimaszewska K, Miguel C, Aronen T, Hargreaves C, Teyssier C, Trontin JF (2016) Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: bottlenecks and recent advances. In: Loyola V, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publisher, Switzerland, pp 319–365

    Chapter  Google Scholar 

  • Li Q, Zhang S, Wang J (2014a) Transcriptome analysis of callus from Picea balfouriana. BMC Genomics 15:553

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Nordenskolold L, Zhou R, Mu Y (2014b) Conformation-dependent DNA attraction. Nanoscale 6:7085–7092

    Article  CAS  PubMed  Google Scholar 

  • LoSchiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Marazziti D et al (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi-Darvari F, Mohd Noor N, Ismanizan I (2015) Epigenetics regulation and gene markers as signals of early somatic embryogenesis. Plant Cell Tissue Org Cult 120:407–422

    Article  CAS  Google Scholar 

  • Montalbán I, De Diego N, Moncaleán P (2012) Enhancing initiation and proliferation in radiate pine (Pinus radiata D. don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiol Plant 34:451–460

    Article  Google Scholar 

  • Nic-Can G, López-Torres A, Barredo-Pool F, Wrobel K, Loyola V, Rojas Herrera R, De la Peña C (2013) New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS ONE 8(8):e72160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noceda C, Salaj T, Pérez M, Viejo M, Cañal MJ, Salaj J et al (2009) DNA methylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. Cell Culture. Trees 23:1285–1293

    Article  CAS  Google Scholar 

  • Oh TJ, Wartell RM, Cairney J, Pullman GS (2008) Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179:67–80

    Article  CAS  PubMed  Google Scholar 

  • Palovaara J, Hakman I (2008) Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. Plant Mol Biol 66:533–549

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Lelu-Walter M, Harvengt L, Trontin JF, MacEacheron I, Klimaszewsca K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Tiss Org Cult 86:87–101

    Article  Google Scholar 

  • Park S, Klimaszewska K, Park J, Mansfield SD (2010) Lodgepole pine: first evidence of seed based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol 30:1469–1478

    Article  CAS  PubMed  Google Scholar 

  • Passarinho P, Ketelaar T, Xing M, van Arkel J, Maliepaard C, Weemen M et al (2008) BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol Biol 68:225–237

    Article  CAS  PubMed  Google Scholar 

  • Ray BK, Dhar S, Henry C, Rich A, Ray A (2013) Epigenetic regulation by Z-DNA silencer function controls cancer-associated ADAM-12 expression in breast cancer: cross-talk between MECP2 and NF1 transcription factor family. Cancer Res 73:737–744

    Article  Google Scholar 

  • Rocha I, Kurczynska E, Potocka I, Steinmacher D, Otoni W (2016) Histology and histochemistry of somatic embryogenesis. In: Loyola V, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publisher, Switzerland, pp 471–494

    Chapter  Google Scholar 

  • Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago trunculata. Plant Cell Tiss Org 70:155–161

    Article  CAS  Google Scholar 

  • Savona M, Mattioli R, Nigro S, Falasca G, Della Rovere F, Costantino P et al (2012) Two SERK genes are markers of pluripotency in Cyclamen persicum Mill. J Exp Bot 1:471–488

    Article  Google Scholar 

  • Schlogl P, Wendt A, Vieira L, Segal E, Guerra M (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tiss Org Cult 108:173–180

    Article  Google Scholar 

  • Smith DR, Walter C, Warr A, Hargreaves C, Grace L (1994) Somatic embryogenesis joins the plantation forestry revolution in New Zealand. In: Proceedings of the Tappi Biological Sciences Symposium, Minneapolis. TAPPI Press, Atlanta, pp 19–29

    Google Scholar 

  • Stasolla C, Yeung E (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Org Cult 74:15–35

    Article  CAS  Google Scholar 

  • Stasolla C, Kong L, Yeung EC, Thorpe TA (2003) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105

    Article  Google Scholar 

  • Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh EIS (2012) A gymnosperm homolog of somatic embryogenesis receptor-like-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tissue Org Cult 109:41–50

    Article  CAS  Google Scholar 

  • Tahir M, Lawi DA, Stasolla C (2006) Molecular characterization of PgAGO, a novel conifer gene of the ARGONAUTE family expressed in apical cells and required for somatic embryo development in spruce. Tree Physiol 26:1257–1270

    Article  CAS  PubMed  Google Scholar 

  • Taillandier E, Liquier J (1992) Infrared spectroscopy of DNA. Methods Enzymol 211:307–335

    Article  CAS  PubMed  Google Scholar 

  • Temiz NA, Donohue DE, Bacolla A, Luke BT, Collins JR (2012) The role of methylation in the intrinsic dynamics of B- and Z-DNA. PLoS One 7(4):e35558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trontin JF, Klimaszewska K, Morel A, Hargreaves C, Lelu-Walter M (2016) Molecular aspects of conifer zygotic and somatic embryo development: A review of genome-wide approaches and recent insights. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer Science + Business Media, New York, pp 167–207

    Chapter  Google Scholar 

  • Tyssier C, Maury S, Beaufour M, Grondin C, Delaunay A, Le Metté C et al (2014) In search of markers for somatic embryo maturation in hybrid larch (Larix x eurolepis): global DNA methylation and proteomic analyses. Physiol Plant 150:271–291

    Article  Google Scholar 

  • Valledor L, Hasbún R, Meijón M, Rodriguez JL, Santa María E, Viejo M et al (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tiss Org Cult 91:75–86

    Article  CAS  Google Scholar 

  • Viejo M, Rodríguez R, Valledor L, Pérez M, Cañal MJ, Hasbún R (2010) DNA methylation during sexual embryogenesis and implications on the induction of somatic embryogenesis in Castanea sativa Miller. Sex Plant Rep 23:315–323

    Article  CAS  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249

    Article  Google Scholar 

  • Whelan DR, Bambery KR, Heraud P, Tobin MJ, Diem M, McNaughton D, Wood BR (2011) Monitoring the reversible B to A-like transition of DNA in eukaryotic cells using Fourier transform infrared spectroscopy. Nucleic Acids Res 39:5439–5448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zacharias W, Jawoki A, Wells RD (1990) Cytosine methylation enhances Z-DNA formation in vivo. J Bacteriol 172:3278–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidad Andres Bello (DI-537-14/R) and Forestal Mininco S. A. (EMP6). The authors are also grateful to the Center of biotechnology of CMPC Mininco, Los Angeles, Chile, especially to Adelaida Poblete, Valeria Jara and Rebeca Sanhueza, for providing plant material, knowledge and experience.

Authors contributions

S. B. and R. H. planned and designed the research, analyzed and interpreted the results and wrote the manuscript. A. B did the DNA methylation experiments. A.T. extracted DNA and acquired FT-IR data. F.S. was responsible for conventional RT-PCR assays. P.J. performed qRT-PCR analysis. M. J. P. obtained micro-morphological data. All the authors participated in drafting or revising the work and approved the final manuscript in agreement with all its aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya Bravo.

Additional information

Communicated by Jose M. Segui-Simarro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

11240_2017_1242_MOESM2_ESM.tif

Supplementary Figure S1—Somatic embryos at cotyledonary stage derived from E lines. The arrow indicates a cotyledonary embryo (TIF 15318 KB)

11240_2017_1242_MOESM3_ESM.tif

Supplementary Figure S2—FT-IR spectra of E and NE DNA samples. Comparison of second derivate spectra obtained by FT-IR microspectroscopic analysis from E (continued line) and NE (dashed line) DNA samples. The bigger differences between them were indicated by encircle the wavenumber beneath the corresponding peak (TIF 2723 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, S., Bertín, A., Turner, A. et al. Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don. Plant Cell Tiss Organ Cult 130, 521–529 (2017). https://doi.org/10.1007/s11240-017-1242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1242-3

Keywords

Navigation