Skip to main content
Log in

Potato dehydrins present high intrinsic disorder and are differentially expressed under ABA and abiotic stresses

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Dehydrins (DHNs) correspond to late embryogenesis abundant proteins (LEA) of group 2, they are known as glycin rich proteins. Despite their expression during the late seed maturation stages, they are also involved in plant response to a number of abiotic stresses such as drought, salinity and cold. In the present study, we identified five full-length cDNAs encoding dehydrins (designated StDHN2a, StDHN1, TAS14, StDHN25 and StLEA27) isolated from potato. These dehydrins were composed of serine amino acids called S domain and lysine-rich segment corresponding to a K domain. Three DHNs (StDHN1, TAS14 and StLEA27) contained Y segments. In silico analysis showed that these StDHN sequences share high homology with other Solanum dehydrin proteins species. The analysis of gene expression using quantitative RT-PCR showed that they were upregulated by dehydration and salinity. Moreover, the search for putative regulatory element in the promoter sequence of dehydrin genes was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fuji H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chemi 281:37636–37645

  • Arumingtyas EL, Savitri ES, Purwoningrahayu RD (2013) Protein profiles and dehydrin accumulation in some soybean varieties (Glycine max L. Merr) in drought stress conditions. Am J Plant Sci 4:134–141

    Article  CAS  Google Scholar 

  • Baranowskij N, Frohberg C, Prat S, Willmitzer L (1994) A novel DNA binding protein with homology to Myb oncoproteins containing only one repeat can function as a transcriptional activator. EMBO J 13:5383–5392

  • Bouaziz D, Charfeddine M, Jbir R, Saidi MN, Pirrello J, Charfeddine S, Bouzayen M, Gargouri-Bouzid R (2015) Identification and functional characterization of ten AP2/ERF genes in potato. Plant Cell Tissue Organ Cult 123:155–172

    Article  CAS  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Irar S, Pagès M, Masmoudi K (2007) Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28

    Article  CAS  Google Scholar 

  • Busk PK, Jensen AB, Pages M (1997) Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J 11:1285–1295

  • Campanella JJ, BitinckaL, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinfo 4:29. doi:10.1186/1471-2105-4-29

    Article  Google Scholar 

  • Cao J, Li X (2015) Identification and phylogenetic analysis of late embryogenesis abundant proteins family in tomato (Solanum lycopersicum). Planta 241:757–772

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Després C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050

  • Charfeddine S, Saidi MN, Charfeddine M, Gargouri-Bouzid R (2015) Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins. Mol Biol Rep 42:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Drira M, Saibi W, Brini F, Gagouri A, Masmoudi K, Hanin M (2013) The K segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and β-glucosidase activities in vitro. Mol Biotechnol 54:643–650

    Article  CAS  PubMed  Google Scholar 

  • Filiz E, OzyigitII, Tombuloglu H, Koc I (2013) In silico comparative analysis of LEA (late embryogenesis abundant) proteins in Brachypodium distachyon L. plant. Omics 6:433–440

    CAS  Google Scholar 

  • Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P (2004) cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16:1077–1090

  • Grotewold E, Drummond BJ, Bowen B, Peterson T (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76:543–553

  • Gubler F, Raventos D, Keys M, Watts R, Mundy J, Jacobsen JV (1999) Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J 17:1–9

  • Hanin M, Brini F, Ebel C, TodaY, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  PubMed  Google Scholar 

  • Hara M, Kondo M, Kato T (2013) A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. J Exp Bot 6:1615–1624

    Article  Google Scholar 

  • Hassan NM, El-Bastawisy ZM, El-Sayed AK, Ebeed HT, Nemat Alla MM (2015) Roles of dehydrin genes in wheat tolerance to drought stress. J Adv Res 6:179–188

    Article  CAS  PubMed  Google Scholar 

  • Higgins D, Thompson J, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133:1605–1616

  • Hughes S, Graether SP (2011) Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci 20:42–50

    Article  CAS  PubMed  Google Scholar 

  • Hughes SL, SchartV, MalcolmsonJ, Hogarth KA, Martynowicz DM, Tralman-Baker E, Patel SN, Graether S (2013) The importance of size and disorder inthe cryoprotective effects of dehydrins. Plant Physiol 163:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+ responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

  • Kappachery S, Yu JW, Baniekal-Hiremath G, Park SW (2013) Rapid identification of potential drought tolerance genes from Solanum tuberosum by using a yeast functional screening method. CR Biol 336:530–545

    Article  Google Scholar 

  • Kim EC, Lee HS, Choi DW (2012) Sequence variability and expression pattern of the dehydrin gene family in Populus alba × P. tremula var. glandulosa. Plant Omics J 2:122–127

    Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosova K, Vıtamvas P, Prasil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617

    Article  CAS  Google Scholar 

  • Kumar M, Lee SC, Kim JY, Kim SJ, Aye SS, Kim SR (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.) J Plant Biol 57:383–393

    Article  CAS  Google Scholar 

  • Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in cab promoters. Plant Cell 1:1147–1156

  • Lee SC, LeeMY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of an abiotic stress-inducible dehydrin gene OsDhn1 in rice (Oryza sativa L.) Mol Cell 19:212–218

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell 10:391–406

  • Monica L, Garcia-Bañuelos Alfonso A, Gardea Joy J, Winzerling Luz Vazquez M (2009) Characterization of a midwinter-expressed dehydrin (DHN) gene from apple trees (Malus domestica). Plant Mol Biol Rep 27:476–487

    Article  Google Scholar 

  • Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143

    Article  CAS  Google Scholar 

  • Murachige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

  • Park HC et al (2004) Pathogen and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

  • Planchais S, Perennes C, Glab N, Mironov V, Inze D, Bergounioux C (2002) Characterization of cis-acting element involved in cell cycle phase-independent activation of Arath;CycB1;1 transcription and identification of putative regulatory proteins. Plant Mol Biol 50:111–127

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  CAS  PubMed  Google Scholar 

  • Pulla RK, Kim YJ, Kim MK, Senthil KS, In JG, Yang DC (2007) Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses. BMB Rep 41:338–343

    Article  Google Scholar 

  • Romero P, Obradovic Z, Dunker AK (2004) Natively disordered proteins: functions and predictions. Appl Bioinform 3:105–113

    Article  CAS  Google Scholar 

  • Rosales R, Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT (2014) The crucial role of Φ and K-segments in the in vitro functionality of Vitis vinifera dehydrin DHN1a. Phytochemistry 108:17–25

    Article  CAS  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M et al (2003) TM4:a free, open-source system for microarray data management andanalysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Saidi MN, Gargouri-Bouzid R, Rayanni M, Drira N (2009) Optimization of RNA isolation from brittle leaf disease affected date palm leaves and construction of a subtractive cDNA library. Mol Biotechnol 41:63–68

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark induced senescence. Plant J 33:259–270

  • Skinner JS, von Zitzewitz J, Szűcs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2005) Structural, functional and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551

  • Svensson J, Ismail A, Palva ET, Close TJ (2002) Dehydrins. In: Storey KB, Storey JB (eds) Cell and molecular responses to stress. Elsevier, Amsterdam, pp 155–171

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

  • Tjaden G, Edwards JW, Coruzzi GM (1995) cis elements and trans-acting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase. Plant Physiol 108:1109–1117

  • Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome based analysis of Barley (Hordeum vulgare L.) Funct Integr Genom 8:387–405

    Article  CAS  Google Scholar 

  • Tripepi M, Pöhlschroder M, Bitonti MB (2011) Diversity of dehydrins in Oleae europaea plants exposed to stress. Plant Sci 5:9–13

    CAS  Google Scholar 

  • Vaewoerd TC, Dekker BMM, Hoekema A (1989) A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:23–62

    Google Scholar 

  • Wang Y, Xu H, Zhu H, Tao Y, Zhang G, Zhang L, Zhang C, Zhang Z, Ma Z (2014) Classification and expression diversification of wheat dehydrin genes. Plant sci 214:113–120

    Article  CAS  PubMed  Google Scholar 

  • Waterer D, Nicole T, Benning GW, Ximing L, Xunjia L, Michael G, Alan M, Lawrence VG (2010) Evaluation of abiotic stress tolerance of genetically modified potatoes (Solanum tuberosum cv. Desiree). Mol Breeding 25:527–540

    Article  CAS  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, et al (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984

  • White AJ, Dunn MA, Brown K, Hughes MA (1994) Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot 45:1885–1892

  • Xu H, Yang Y, Xie L, Li X, Feng C, Chen J, Xu C (2014) Involvement of multiple types of dehydrins in the freezing response in loquat (Eriobotrya japonica). PloS One. doi:10.1371/journal.pone.0087575.

    Google Scholar 

  • Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804:996–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

  • Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264:145–153

Download references

Acknowledgments

This work was supported by the Tunisian Ministry of High Education and Scientific Research. The authors are grateful to Dr. Anne-Lise Haenni from the Institute Jacques Monod (France) for reading and improving the English.

Author contributions

SC, MC, and RJ carried out the experimental work. MNS and RGB participated in the data analysis and contributed in writing and revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safa Charfeddine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charfeddine, S., Charfeddine, M., Saïdi, M.N. et al. Potato dehydrins present high intrinsic disorder and are differentially expressed under ABA and abiotic stresses. Plant Cell Tiss Organ Cult 128, 423–435 (2017). https://doi.org/10.1007/s11240-016-1120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1120-4

Keywords

Navigation